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ABSTRACT

Using a 94-GHz homodyne interferometer employing a highly-directional quasi-optical lens antenna aimed at
a human subject’s chest, we can measure chest wall displacement from up to 10m away and through common
clothing. Within the chest displacement signal are motions due to cardiac activity, respiration, and gross body
movement. Our goal is to find the heart rate of the subject being monitored, which implies isolation of the minute
movements due to cardiac activity from the much larger movements due to respiration and body movement. To
accomplish this, we first find a subset of the true heartbeat temporal locations (called “confident” heartbeats)
in the displacement signal using a multi-resolution wavelet approach, utilizing Symlet wavelets. Although the
chest displacement due to cardiac activity is orders of magnitude smaller than that due to respiration and body
movement, wavelets find those heartbeat locations due to several useful properties, such as shape matching,
high-pass filtering, and vanishing moments. Using the assumption that the “confident” heartbeats are randomly
selected from the set of all heartbeats, we are able to find the maximum a posteriori statistics of an inverse
Gaussian probability distribution modeling the inter-heartbeat times. We then analyze the “confident” heart-
beats and decide which heartbeats are probabilistically correct and which are not, based on the inverse Gaussian
distribution we calculated earlier. The union of the “confident” set, after pruning, and the interpolated set forms
a very close approximation to the true heartbeat temporal location set, and thus allows us to accurately calculate
a heart rate.
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1. INTRODUCTION

Gathering remote data on cardiac activity is an important and markedly difficult problem. Examples of applica-
tions include medical monitoring (e.g. sleep apnea1), security (e.g. malicious intent detection,2 lying detection3),
military (e.g. finding hostiles in barricaded buildings4), and emergency response (e.g. finding people trapped
in a building collapse,4 triage for burn victims). However, even with a large amount of research, the problem
remains difficult due to the plethora of confounding variables and variations of individual humans.

There have been many proposed modalities to find heart rate at a distance, such as using the infrared spec-
trum,5 speckle pattern analysis,6 optical (video) analysis,7 and electromagnetic waves.3,4, 8–12 Each method has
its own advantages and disadvantages. We choose to use electromagnetic waves, specifically millimeter-waves, be-
cause of the combination of advantages this provides: a compact transceiver, good range, lighting-independence,
and the ability to penetrate through various materials. Specifically, our system finds the displacement of an
object (in this case, the chest wall) using the reflected millimeter-wave signal from the surface of the object.

This method dates back to the 1970s and 1980s, when Lin showed that the respiratory and cardiac rates
could be gathered from a stationary, clothed subject at a distance of roughly 0.3 m.8 These early studies
used the Doppler effect to calculate the displacements of the chest. Since the radio frequency waves undergo a
frequency shift upon reflection from a moving surface (in this case the chest), the change in frequency between
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Figure 1: Flowchart of the processing steps for remote detection of cardiac activity.

the transmitted and reflected signals can be analyzed to find the velocity of the chest wall, and subsequently the
heart rate and respiratory rate.

A more accurate method was developed, and has gained wide popularity, which uses in-phase and quadrature
reflections from the subject’s chest in order to find the phase of the reflected signal.9–13 Since displacement mod-
ulates the phase, the movement of the chest can be found directly from the two signals after phase demodulation.
The differences in the various approaches have to do with the method to extract the tiny motions due to cardiac
activity from the entire chest displacement signal.

This problem is a very difficult one, since motions of the chest due to cardiac activity are eclipsed by most
other motions. In fact, most studies have the subject sit still against a back support to minimize the motions
due to involuntary swaying back and forth, which is enough to mask the motions due to the heart beating. The
only way to physically isolate the motions of interest is to have the subject sit still against a solid back support
and to hold his breath. This, however, is a very contrived situation, and although it is good for early-stage
proof-of-concept, it fails to address the larger picture of natural monitoring scenarios.

Our work expands the methods we developed previously14 to further perform a statistical analysis of the
detected heartbeats using a wavelet approach. In previous research,12,14–16 wavelets have been used to decom-
pose the displacement signal. Wavelets provide excellent temporal resolution for rapid events in time, such as
heartbeats, and good frequency resolution for slower events in time, such as breathing.17 However, wavelets
alone cannot always find every heartbeat. The focus of our proposed method is on the processing that occurs
after a set of heartbeats is detected in the chest displacement waveform. These heartbeats may be erroneous in
several locations, so it is important to use the statistics of the detected locations to get the best possible estimate
of the true heartbeat locations.

2. METHODS

In order to find a subject’s cardiac pattern remotely, several steps have to be taken. Fig. 1 provides a summary
of the processing steps that will be presented in this section.

2.1 Data Acquisition

To find heart rate, we first gather a chest displacement signal, i.e., the movement of the chest perpendicular
to the frontal plane. To obtain a chest displacement signal, we use a 94-GHz continuous-wave millimeter-wave
interferometer2 and a National Instruments USB-9239 24-bit analog-to-digital converter with a sampling rate of
5000 Hz to collect in-phase (I) and quadrature (Q) components of the reflected signal. Details of the system can
be found in our previous work.12 All processing was performed in MATLAB.18

The reflected millimeter-wave signal, when the sensor is aimed at the chest, is a combination of several vector
components.9,12 These components also include reflections from stationary or moving objects not related to the
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subject. The vector component due to chest wall motion can be isolated using circle-fitting in the in-phase–
quadrature (I-Q) space. Then, using simplifying assumptions about noise and interference, the measured signal
due to chest motion can be used to find the chest displacement signal given by:

displacement =
λ0
4π
· unwrap

[
arctan

(
Q

I

)]
, (1)

where λ0 = 2πc
ω0

, c is the speed of light, ω0 = 94 · 2π · 109 rads/s, and “unwrap” denotes phase unwrapping to

account for phase discontinuities at ±π.12,18

Using a sampling frequency of 5000 Hz places a limit on the maximum velocity that we can resolve without
aliasing. Since one full rotation of the vector in the I-Q space is caused by a displacement of λ0/2, the maximum
velocity we can resolve (vmax) is calculated as:

vmax

(
1

fs

)
=
λ0
4

⇒ vmax =
fs · λ0

4
,

where fs is the sampling frequency. For us, this gives an upper bound of vmax=3.987 m/s (8.724 mph), which
amounts to a brisk jog. From empirical data, we have found that the velocity of the chest due to cardiac activity
alone, recorded on a seated subject, leaning against a chair back and holding his breath, is not greater than
∼0.01 m/s. This means that the subject can be moving quite rapidly without aliasing the motions due to cardiac
activity.

2.2 Initial Heartbeat Temporal Location Detection

Once the displacement signal is generated using eq. (1), individual heartbeat locations must be found. A
procedure similar to the one in the work of Mikhelson et al.12 is used. First, the displacement waveform is
downsampled to 50 Hz. Then, the signal is filtered using a Symlet wavelet. The absolute value of this signal
is next smoothed with a moving-average filter of varying lengths. The shorter the moving-average filter, the
more peaks are preserved in the signal; the longer, the more peaks are smoothed out. We then find the peaks
resulting from smoothing with various length filters, and record all their locations, as shown in Fig. 2(a). Finally,
a ridge analysis is performed wherein we find the strongest vertical ridges, i.e. the longest vertically-connected
components of the graph. The result is also shown in Fig. 2(a). The ridge locations comprise a point process
of “confident” heartbeat observations (O = o1,o2, . . . ,oN ), since these peaks persist across many lengths of
moving-average filters, where oi is the time of the ith “confident” observation.

To evaluate all processing techniques, an electrocardiogram (ECG) was gathered concurrently with the data
in order to know where the actual heartbeats (S = s1, s2, . . . , sM ) are present, where si is the time of the ith
true heartbeat. Using the same data as in the previous paragraph, the true heartbeat locations (S), calculated
from the ECG, along with the “confident” heartbeats (O), are shown in Fig. 2(b).

2.3 Heartbeat Temporal Location Estimation

The locations obtained in Section 2.2 are a good starting point, but an incomplete picture. While those locations
are strong candidates to be in the final set of heartbeat locations, they are not guaranteed to be correct, as false
positives (FPs) can occur. Additionally, depending on the quality of the reflected signal, there may be many
false negatives (FNs) present as well. Since pure interpolation between heartbeats would not actually add any
new information, a good model is needed to create a practical and useful algorithm to find the best estimate of
S based on O.

2.3.1 Probabilistic Modeling

In order to interpolate missing heartbeats, there has to be a good model of cardiac activity. The probability
distribution of the time between subsequent heartbeats has to have the following physiological characteristics:
a heartbeat cannot immediately follow another heartbeat due to the refractory period; the probability has a
maximum at the subject’s average heart rate at that moment in time; and the probability decreases thereafter.
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Figure 2: Multiresolution ridge analysis. (a) Peak locations (circles) across various moving-average lengths and
strongest ridges (lines) indicating “confident” heartbeat locations. (b) True heartbeat locations and “confident”
heartbeat locations.
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Figure 3: (a) Inverse Gaussian probability density functions, where µ = 1, and θ = 10 and θ = 100. (b) Heartbeat
locations with superimposed MLE inverse Gaussian distribution originating at each heartbeat.

Such a distribution was found by Barbieri et al.19 as the inverse Gaussian (IG) probability density function
(PDF):

P [ti + τ |ti;µ, θ] = P [τ |µ, θ] ∼ IG(τ ;µ, θ) =

(
θ

2πτ3

)1/2

exp

(
−θ(τ − µ)2

2µ2τ

)
, (2)

where τ is the time after a given heartbeat at time ti, µ is the average time between heartbeats, and θ is a
shape parameter that determines the width of the function. An example can be seen in Fig. 3(a). In addition,
Fig. 3(b) shows a sequence of heartbeat temporal locations from an ECG with the maximum likelihood estimate
(MLE) inverse Gaussian distribution fitted to the inter-heartbeat times superimposed on the sequence. For this
sequence, µ = 1.026 s, and θ = 29.514 s.

Using the IG distribution allows us to better define the heartbeat sequence S = s1, s2, . . . , sM. Let
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Figure 4: (a) Histogram of valid time spacings in O. (b) Kernel-smoothed histogram of valid time spacings in
O.

xs,i ∼IG(si − si−1;µtrue, θtrue) be the ith heartbeat inter-arrival time in S. Then,

sm =

m∑
i=1

xs,i, ∀m ∈ [1,M ], (3)

where M is the total number of heartbeats in the sequence and s0 , 0. The assumption that µ and θ are constant
is valid for a short heartbeat sequence, but in reality, both µ and θ can vary as functions of time.

2.3.2 Parameter Estimation

Given the sequence O found in Section 2.2, the first task is to estimate a general µ and θ, given that the sequence
is not long enough for the parameters to change much. The ML estimate of µ for an IG distribution is the mean
of the intervals. However, this would be a poor estimate in our case because O may contain FPs and FNs.
Therefore, we use a different method.

First, we find all the time intervals between subsequent heartbeats in O, denoted by xo,i, defined as in eq.
(3). Then, we eliminate all intervals outside of the typical human range of 30-200 beats per minute (bpm):

x̃o,i = {xo,i|0.3s ≤ xo,i ≤ 2s} .

Next, we find the histogram of X̃o = x̃o,1, x̃o,2, . . . , x̃o,M , and, to smooth it out, we use Gaussian kernel smooth-
ing.20 Finally, we use the inter-beat interval that corresponds to the highest value of the smoothed histogram as
the value for our estimate of µ:

µest = argmax
x

GS(Hist(X̃o)), (4)

where Hist and GS are the histogram and Gaussian smoothing operations, respectively, and the smoothed
histogram is parametrized by x. Fig. 4 shows this process for an observation sequence O with 65 correct
locations, i.e. true positives (TPs), 35 FNs, and 15 FPs. The ML estimate of the heart rate here is 52.41 bpm,
while we calculate µest as 59.82 bpm. The true heart rate is 59.83 bpm.

The standard deviation (StD) of the IG distribution is given by
√
µ3/θ. Using the value of µest and an

empirically found value of the StD of the heartbeat locations (denoted by γ), we set

θest = µ3
est/γ

2, (5)

where we set γ = 0.07 s based on analyzing a large number of various ECGs.
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Figure 5: Region of convergence of µest to µtrue. (a) Difference between µest and µtrue. (b) The region where
µest is within 100 ms of µtrue is shown in black.

In order to validate this technique, we created a model for the process of generating O. The locations in O
are generated using an IG process with a given µ and θ. In O, TPs occur with probability p (implying FNs
with probability 1 − p). The number of FPs in each interval between heartbeats is determined by a geometric
probability distribution with parameter 1− q. Their locations are determined by a uniform distribution over the
current interval.

The parameters p and q are inherent to the detector which generates O. Ideally, the detector has p = 1 and
q = 0. However, this is not the case in practice. Fig. 5 shows the accuracy of µest in p–q space (using the detector
described in Sec. 2.2 for a sequence of 10000 heartbeats. This shows that as the number of heartbeats increases,
the value of µest approaches µtrue for certain values of p and q. As long as the detector in Section 2.2 operates
in a convergent region, µest should be a good estimate for the rest of the heartbeat estimation procedure.

It should be noted, however, that not the entire convergent area is good. Towards the top left of plots in Fig.
5, there is a large number of FPs and FNs, which creates what may look like a feasible sequence of heartbeats.
This may give an accurate value for µest, but would not do well with our verification in Sec. 2.4. Therefore, it
is ideal to stay as far to the bottom right in the plots of Fig. 5 as possible.

Another important note is that the FN and FP locations must be random. If they have correlation, then the
procedure to find µest will not work. For example, if every other heartbeat is missing, µest will be 2 · µtrue, and
there is no way to recover the correct inter-beat spacings.

2.3.3 Modeling for Optimization

The goal of the subsequent processing will be to make a sequence Q out of O that is as close as possible to S.
A big problem is that it is very difficult to define what “as close as possible” really is. If one wants to know just
the heart rate, then only the number of heartbeats in Q and S have to match. If one wants to minimize FPs
and FNs, then the placement of the heartbeats in Q should match those in S as closely as possible. If one wants
to analyze heart rate variability, then the relative locations of the heartbeats in Q have to match those in S (as
opposed to absolute locations).

We start our analysis by assuming a generic modelM that we would like to use to minimize some cost metric
f(·):

M = argmin
M

f(M,O). (6)

This optimization will be broken up into two parts: pruning and interpolation (as was shown in Fig. 1). Since
O consists of TPs, FPs, and FNs, the goal of pruning is to eliminate the FPs in O (i.e. to find a set of FPs
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P). Then, the goal of interpolation is to eliminate the FNs in O (i.e. to find a set of FNs, I). Both of these
procedures will use the probabilistic model of heart rate presented in eq. (2) along with µest and θest found in
eqs. (4) and (5). Therefore, our goal is to minimize FPs and FNs, while at the same time produce as accurate
of a heart rhythm as possible. Our model is then specified by M = {P, I, IG(τ ;µ, θ), µest, θest}, and our cost
metric f(·) is related to the probability of the resulting sequence Q in the context of O:

M = argmax
M

P [M|O], (7)

that is, we want to maximize the probability of the model M given the observation sequence O.

2.3.4 Heartbeat Interpolation

The ideal goal of heartbeat interpolation is to fill in every FN location. If there would be no FPs in O and each
oi would be evenly spaced, this would entail simply finding µest and filling in spaces much larger than µest with
the proper number of heartbeats. However, the problem is made difficult by the uneven spacing of ois and the
occurrence of FPs.

The problem can be formulated as finding the maximum a posteriori (MAP) estimate of the interpolated
heartbeats as follows. Let I = i1, i2, . . . , iL be a vector of interpolated heartbeats. Then, the goal is to find:

Î = argmax
I,µ

P [I, µ|O], (8)

where θ is uniquely determined by µ and therefore does not factor into the optimization. This problem is general
in the sense that µ can be a function of time and is therefore optimized at the same time as I. Using Bayes’
Theorem, eq. (8) can be reformulated as:

Î = argmax
I,µ

P [I|µ,O]P [O|µ]P [µ]

P [O]
, (9)

where P [µ] is a prior distribution on µ and can be estimated using µest as

P [µ] ∼ N (µest, σ
2), (10)

where N (a, b) denotes a Gaussian probability distribution with mean a and variance b, and σ is a standard
deviation based on empirical observations of how much an individual’s heart rate can change in a given period
of time.

In order to solve eq. (9), we analyze O in a sliding window of length β. Let Oj = oj ,oj+1, . . . ,oj+β−1 be a
window of β observations. We then assume that the heart rate does not change for small intervals (which implies
a first-order Markov property on O) and use eq. (2) to write

P [Oj |µ] =

j+β−1∏
i=j+1

P [oi|oi−1, µ]

=

j+β−1∏
i=j+1

IG(oi − oi−1;µ, µ3/γ2). (11)

To find P [I|µ,O], we again have to make some simplifying assumptions, since a probability measure is difficult
to compute when the length of the sequence I can vary. We therefore assume, as before, that the heart rate
does not change for short periods of time. This allows us to say that the sequence of interpolated heartbeats is
equispaced in between two observations. In effect, this reduces the interpolated heartbeats to a single number,
πj , which is the number of interpolated heartbeats in a given interval, where πj is the number of interpolated
heartbeats between observations oj+bβ/2c−1 and oj+bβ/2c. We can then write

P [Ij |µ,Oj ] = P [πj |µ,Oj ]

= IG(
oj+bβ/2c−1 − oj+bβ/2c

πj + 1
;µ, µ3/γ2). (12)
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Figure 6: Heartbeat interpolation sample procedure. (a) Cost function (eq. (13)) of a neighborhood j. (b)
Interpolated heartbeats (π∗j ).

Using eqs. (10), (11), and (12), we can solve eq. (9) in a sliding window:

π∗j = argmax
πj ,µ

P [πj|µ,Oj ]P [Oj |µ]P [µ], (13)

where we have discarded P [O] in the denominator of eq. (9) since it is not a function of πj or µ. An example

of this procedure can be seen in Fig. 6. Combining all the interpolated heartbeats into Î =
{
π∗j
}

, we get the
interpolated sequence OI as

OI = {O} ∪ {Î} (14)

2.3.5 Heartbeat Pruning

Given a set of heartbeat temporal locations, O, the goal of pruning is to eliminate heartbeats which do not
belong from a probabilistic viewpoint:

P̂ = argmax
P,µ

P [P, µ|O], (15)

where µ, the mean of the inverse Gaussian governing process, is considered part of the optimization as well
because it can vary locally. The maximum a posteriori (MAP) estimate of P can be formulated as

P̂ = argmax
P,µ

P [O|P, µ]P [P, µ]

P [O]
. (16)

The probability measure P [O|P, µ] is intractable, since it is a combinatorial problem (where P can be any subset
of O). In addition, P [P, µ] is poorly defined. Therefore, we must reformulate the problem to make it solvable.

Instead of finding a subset of O directly, we find the probability that each element of O is not a FP. This
analysis is performed using a sliding window of length α. Let Oj = oj ,oj+1, . . . ,oj+α−1 be a window of α
observations. Then,

{ÎP,j , µ∗j} = argmax
IP,j ,µ

P [IP,j |µ,O]P [O|µ]P [µ]

P [O]
, (17)

where IP,j is a sequence of interpolated heartbeats in the jth window (composed of πP,j equispaced heartbeats
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as in Sec. 2.3.4, where π∗P,j corresponds to ÎP,j as before), obtained using

P [Oj |µ] =

j+α−1∏
i=j+1

P [oi|oi−1, µ]

=

j+α−1∏
i=j+1

IG(oi − oi−1;µ, µ3/γ2) (18)

P [µ] ∼ N (µest, σ
2) (19)

P [IP,j |µ,Oj ] = P [πP,j |µ,Oj ]

= IG(
oj+α−1 − oj
πP,j + 1

;µ, µ3/γ2), (20)

which is akin to eqs. (9), (10), (11), and (12), where we now use the outermost heartbeats in Oj as opposed to
the center ones for interpolation.

Then, we want to find the probability that the individual heartbeats in Oj conform to the modeled heartbeats

ÎP,j , and that ÎP,j is a good model for the interval:

cj,k = P [oj+k−1, IP,j = ÎP,j , µ = µ∗j ], ∀k ∈ [2, α− 1]

= P [oj+k−1|IP,j = ÎP,j , µ = µ∗j ] · P [IP,j = ÎP,j |µ = µ∗j ] · P [µ = µ∗j ], ∀k ∈ [2, α− 1]

= N (oj+k−1; îP,j,k, σ
2) · IG(

oj+α−1 − oj
π∗P,j + 1

;µ∗j , (µ
∗
j )

3/γ2) · N (µ∗j ;µest, σ
2), ∀k ∈ [2, α− 1], (21)

where îP,j,k is the element of ÎP,j closest to oj+k−1 and σ is the same as used previously. Adding together all the
cj,k elements that correspond to each oi forms the sequence C={ci}, which is the confidence in each observation
in O.

The pruned heartbeats P̂ are then found as

P̂ = {oi|ci < (µC − 0.5σC)} ∀i ∈ [1, N ], (22)

where

µC =
1

N

N∑
i=1

ci, σC =

(
1

N − 1

N∑
i=1

(ci − µC)
2

) 1
2

.

The pruning procedure can be seen in Fig. 7. Once we find the pruned heartbeats P̂, we can form the sequence
OP as

OP = {O} \{P̂}, (23)

which is the sequence O with the pruned heartbeats P̂ removed.

2.3.6 Heartbeat Estimation and Validation

After obtaining O as described in Sec. 2.2, pruning is performed to get OP according to eqs. (15) and (23).
Then, OP is used as the input to the interpolation procedure to get OI according to eqs. (9) and (14). After

this, OI is used as the input to the pruning procedure, and so on, until P̂ = Î = ∅, as shown in Fig. 1. At this
point, we set Q = OI, where Q = q1,q2, . . . ,qD.

The final step of the heartbeat estimation procedure is to make sure that Q is a valid heartbeat sequence,
i.e. the intervals in Q make physiological sense. We set the upper bound of heart rate to 200 bpm, and sweep
across Q, checking each interval (qi+1 − qi, i ∈ {2, 3, . . . , D − 2}). If the interval is too short, then we use

Pi = IG(qi − qi−1;µest, θest) · IG(qi+2 − qi;µest, θest), (24)

Pi+1 = IG(qi+1 − qi−1;µest, θest) · IG(qi+2 − qi+1;µest, θest). (25)

Eq. (24) is the probability that the ith heartbeat fits into the overall process, and eq. (25) is the probability
that the (i+ 1)st heartbeat fits into the overall process. If Pi > Pi+1, then we eliminate qi+1; if Pi < Pi+1, then
we eliminate qi. This guarantees that Q is a feasible physiological process.

Proc. of SPIE Vol. 8719  87190M-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/25/2013 Terms of Use: http://spiedl.org/terms



0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

Time (s)

lo
g(

c j,k
)

Cost Values

 

(Neighborhood of observations)

Cost Values

Oj

πP,j* (Interpolated heartbeats)

(a)

0 10 20 30 40 50 60 70 80 90 100
−250

−200

−150

−100

−50

0

Time (s)

lo
g(

C
)

Pruning Procedure

 

(Observations)

(Confidence Values)

Pruning Threshold

Pruning Procedure

lo
g(

C
)

O

C

(b)

Figure 7: Heartbeat pruning sample procedure. (a) Cost function (eq. (21)) of a neighborhood oj . (b) Obser-
vation sequence O with associated confidence values C.
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Figure 8: Flowchart of verification algorithm.

2.4 Result Verification

In order to consistently evaluate the performance of the algorithm, we created a verification algorithm. First, we
find the peaks of the QRS complexes in the concurrently-gathered ECG using the Pan-Tompkins algorithm,21

which creates the sequence S. Then, each value in S is offset by 0.16 s, an empirically-determined value to
account for the time between the QRS-complex and the propagation of the heart motion to the chest wall (oS
in Fig. 8). Next, each value in Q is compared to oS. If a heartbeat falls within 0.4 s of an element of oS, it
is counted as a true positive (TP); otherwise, it is counted as a false positive (FP). If there is no element of Q
within 0.4 s of any element of oS, it is counted as a false negative (FN). True negatives (TN) do not apply to
this data, as we are only interested in finding the presence of heartbeats, not their absence. The whole process
can be seen in the flowchart in Fig. 8.

Using these measures, we are able to find the recall (or sensitivity) and precision as

Recall =
TP

TP + FN
(26)

Precision =
TP

TP + FP
(27)

These measures are a good indication as to the accuracy of the algorithm, as they take not only the heart rate
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Figure 9: Results of applying our algorithm on synthetic data for varying p and q. (a) Recall - black area
indicates recall>98%. (b) Precision - black area indicates precision>98%. (c) Sample sequence showing S, Q,
O, and FP locations, when p=0.6 and q=0.3.

into account, but also the actual heartbeat temporal locations. If we were to simply use the average of the
inter-beat spacings to calculate the heart rate, a large number of false positives followed by a large number of
false negatives might give an accurate heart rate. However, using this verification algorithm, only accurately
placed heartbeats contribute to the true positive count.

3. RESULTS

In this section, we present the results of using the algorithm described in Sec. 2 in several scenarios, ranging
from simplest to most complicated. For all of our tests, we used α = 10 (Sec. 2.3.5) and β = 11 (Sec. 2.3.4),
based on cross validation.

3.1 Synthetic Data

3.1.1 Generated Data

The first test of our algorithm was to use it on data generated using the model presented in Sec. 2.3.2 with
varying p and q to simulate various ratios of FNs and FPs. We used a µtrue value of 1.0 s to simulate a heart
rate of 60 bpm. The shape parameter θtrue was set to µ3

true/γ
2 = 204.08 s in order to keep a standard deviation

of 0.07 s as was established in Sec. 2.3.2. The results of using our algorithm with various p and q values are
presented in Fig. 9, along with a sample sequence in Fig. 9(c), with p=0.6 and q=0.3.

3.1.2 ECG Data

The next test of our algorithm was done using ECG samples from the Physionet22 databases. Here, we used
actual patients’ ECG data, but removed and added heartbeats in the same way as before by varying p and q.
Once again, the results of our algorithm for a given dataset are presented in Fig. 10, with an example sequence
shown in Fig. 10(c) with p=0.6 and q=0.3.

Proc. of SPIE Vol. 8719  87190M-11

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/25/2013 Terms of Use: http://spiedl.org/terms



Recall

p

q

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

q

p

Recall

(a)
Precision

p

q

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision

q

p

(b)

235 240 245 250 255 260
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

Physionet Results

 

(QRS Complexes)
(Final, Interpolated Heartbeats)
("Confident" Heartbeats)

Incorrect "Confident" Heartbeats (FPs)

S

Q

O

Time (s)

Physionet Results

(c)

Figure 10: Results of applying our algorithm on Physionet data for varying p and q. (a) Recall - black area
indicates recall>98%. (b) Precision - black area indicates precision>98%. (c) Sample sequence showing S, Q,
O, and FP locations, when p=0.6 and q=0.3.

Table 1: Description of Subjects.
Subject # Gender Age Height (cm) BMI

1 F 20 164 18.3
2 M 24 180 26.5
3 M 25 173 22.8
4 M 26 168 20.2
5 M 57 173 25.5

3.2 Millimeter-wave Data

The most important validation of our algorithm was on actual data captured by our millimeter-wave system
(Sec. 2.1). For these tests, we received approval from Northwestern University’s Office for the Protection of
Research Subjects (IRB Project Number: STU00051704).

We tested our algorithm on data from stationary subjects as well as mobile ones. The displacement of
the chest wall due to cardiac activity is on the order of 10−4 m, while that due to respiration varies from
approximately 0.004 to 0.012 m.23 The movement that we processed was more than 1 m, which is several orders
of magnitude greater than that due to cardiac activity.

For our tests, we had five subjects. Their characteristics are presented in Table 1. They all followed the same
test protocol, described as follows. Starting out seated 3.5 m from the sensor for about 15 s, the subject then
stood up and walked slowly toward the sensor until 2 m away. After that, the subject moved backward until 4
m from the sensor, and remained at that distance for about 40 s. Finally, the subject walked more quickly to a
distance of 2 m from the sensor.

The results can be seen in Table 2, where |S| is the total number of actual heartbeats (in the ECG) and
the state designation m means the subject was moving, while nm means the subject was not moving. A sample
sequence for data with movement is presented in Fig. 11.
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Table 2: Results of Proposed Algorithm.
State |S| TP FP FN Rec Prec

m 777 728 47 49 93.7% 93.9%
nm 1469 1362 103 107 92.7% 93.0%

N/A 2246 2090 150 156 93.1% 93.3%
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Figure 11: Results of applying our algorithm on millimeter-wave data.

4. DISCUSSION

When used on synthetic data, our algorithm performs very well, even in the presence of significantly many FNs
and FPs. It is important to note, however, that the standard deviations of the inter-beat times in data in
Sec. 3.1.1 were set to be similar to real-life ECGs, and Sec. 3.1.2 used real ECGs. The standard deviation of
the inter-beat times created by the algorithm in Sec. 2.2, in relation to the concurrently-gathered ECG, were
approximately five times larger than those in the ground truth. This extra variability made the probabilistic
pruning and adding much more difficult, since these algorithms rely on the confidence that a series of heartbeat
locations “looks” correct. Therefore, the algorithm could potentially perform much better if the processing to
determine O is improved.

A big advantage of this algorithm is that it uses the inherent statistics of the observations O without relying
on heuristics and training, as was done in our previous work.14 Here, there is no need to train on data to adjust
thresholds (except for the pruning in eq. (22)), since everything is formulated in a Bayesian inference framework.
Even so, the results are better on data with movement than with the previous algorithm.

The detector that was used in this work (Sec. 2.2) performed with p = 0.793 and q = 0.065. This put us well
within the convergent region in Fig. 5, which means that our estimate of µest and θest should be correct, given
a long enough sequence of observations. However, since the real observation sequences were not very long, our
pruning and interpolation algorithms had a harder time with some sequences.

The threshold in eq. (22), i.e. (µC − 0.5σC), can be tuned for different types of detectors. The smaller it is,
the more aggressive the pruning will be. This would be useful if the detector admits a large number of FPs, in
which case it would be advantageous to eliminate more observations, even though more TPs would be pruned
as well. This would then rely more heavily on the interpolation procedure to fill in the FN locations. In this
scenario, it would be important to have a very small deviation of the correct observations from the true heartbeat
locations, because any deviation would be exacerbated by the interpolation procedure. On the other hand, using
a high threshold would result in more modest pruning. We chose the value we did because it created a good mix
of the two pruning regimes for our detector, and created an even mix of FPs and FNs as is shown in Table 2.
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Table 3: Run Time of Algorithm Components.
Find O Prune Interpolate Validate Total

Time (s) 0.1865 0.0060 0.0131 0.0011 0.4007

One aspect of our validation on synthetic data in Sec. 3.1 that stood out was that the recall tended to be
higher than the precision. This implies a larger number of FPs as compared to FNs. This, however, was not
the case when testing on real data in Sec. 3.2. We think this is because our algorithm for creating FPs in the
synthetic cases is potentially too harsh. As can be seen in Fig. 10(c), the FP locations can be in very difficult
locations despite a modest value of q. This of course gets even worse for larger values of q. The FP locations in
the real data were not so clustered as in the synthetic data. However, this more challenging scenario was a good
test of our algorithm, and we still got very good results.

It should be noted that the proposed algorithm works properly only for regular cardiac rhythms. For subjects
exhibiting intermittent long inter-beat intervals, this method would interpolate heartbeats in the large intervals
and create a healthy-looking output. Also, some subjects, such as young people, might have a heart rate faster
than 200 bpm, in which case the algorithm would prune heartbeats in order to enforce a rate under 200 bpm.
However, although this algorithm may not be ready for medical diagnostics, it would perform well in a security
setting where the important characteristic is the subject’s average heart rate.

An important aspect in a security setting is how quickly the algorithm could detect a change in heart rate, as
this is a potential marker for suspicious activity. Since our algorithm operates in a local window, an entirely new
set of statistics would be obtained every max(α, β) heartbeats, or 11 heartbeats for our settings. This means
that a sudden change in heart rate would be detected in ∼10 s.

As far as the speed of the algorithm, it could potentially be implemented in near-real time. It was used
here strictly for post-processing on longer signals. However, if we first use a larger window to get µest, we can
then operate on a moving window of size max(α, β), which is 11 heartbeats in our case. While we have not
implemented this version of the algorithm, we have measured the run-times of the various components over 100
iterations, presented in Table 3. As can be seen, the entire algorithm can run in ∼0.4s on 11 heartbeats, making
near-real time implementation a possibility. All measurements were made using a Windows 7 64-bit machine
with an Intel W3580 CPU with 12 GB of RAM.

5. CONCLUSION

The proposed probabilistic algorithm represents an improvement over our previous method14 because it uses a
solid Bayesian inference framework as opposed to statistical heuristics to find missing heartbeats and to prune
incorrect observations. The ability to accommodate for local variations in heart rate, due to effects such as
respiratory sinus arrhythmia, is also a big advantage of this method. However, heartbeat temporal irregularities
are impossible to interpolate correctly if there are large intervals with no observations. Therefore, it is important
that we have developed a good algorithm for generating O before we begin our post-processing.

It should be noted, very importantly, that we have presented an algorithm that works on moving subjects
in realistic scenarios. To the authors’ knowledge, this has only been reported once before,14 and the proposed
algorithm has outperformed that one. Future work will focus on better techniques in Sec. 2.2, since the better
the initial locations in O become, the better our algorithm will perform.
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