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Abstract Using a 94-GHz millimeter-wave interferome-

ter, we are able to calculate the relative displacement of an

object. When aimed at the chest of a human subject, we

measure the minute motions of the chest due to cardiac

activity. After processing the data using a wavelet multi-

resolution decomposition, we are able to obtain a signal

with peaks at heartbeat temporal locations. In order for

these heartbeat temporal locations to be accurate, the

reflected signal must not be very noisy. Since there is noise

in all but the most ideal conditions, we created a statistical

algorithm in order to compensate for unconfident temporal

locations as computed by the wavelet transform. By ana-

lyzing the statistics of the peak locations, we fill in missing

heartbeat temporal locations and eliminate superfluous

ones. Along with this, we adapt the processing procedure to

the current signal, as opposed to using the same method for

all signals. With this method, we are able to find the heart

rate of ambulatory subjects without any physical contact.

Keywords Remote sensing �Millimeter-wave � Heartbeat

detection � Heart rate � Wavelets

1 Introduction

There are many reasons to gather physiological measure-

ments at a distance without any physical contact. These

include medical monitoring, security, and life detection.

Whether in a hospital or at a subject’s home, non-contact

monitoring is a non-obtrusive and safe way to monitor a

patient without interfering with his/her life. In addition,

during lengthy tests, such as for sleep apnea, the subject can

be uncomfortable wearing monitoring equipment. For this

purpose, it has been demonstrated that non-contact equip-

ment can be used for respiratory function observations

while a person sleeps [17]. Another very useful application

is for detection of lying. In this scenario, a person answers

questions while vital signs are monitored without the sub-

ject’s knowledge [4]. In addition, such technology has been

used to find whether people are alive in situations where it

may be dangerous to retrieve a person [7].

In order to obtain vital signs, a popular approach has

been to look at the displacement of the chest wall and to

isolate displacements due to cardiac activity and respira-

tion. In the 1970s and 1980s, Lin [6] showed that the

respiratory and cardiac rates could be gathered from a

clothed subject at a distance of roughly 0.3 m. These early

studies used the Doppler effect to calculate physiological

parameter measurements. Since the radio frequency waves

undergo a frequency shift upon reflection from a moving

surface (in this case the chest), the change in frequency

between the transmitted and reflected signals can be ana-

lyzed to find the velocity of the chest wall, and subse-

quently the heart rate and respiratory rate.
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A more accurate method is to gather in-phase and

quadrature reflections from the subject’s chest in order to

find the phase of the reflected signal [8, 10–12, 14]. The

displacement modulates the phase, so the displacement can

be found directly after some further processing. The main

difference in every approach has been how to extract the

tiny motions due to cardiac activity from the entire dis-

placement signal.

A common approach has been to take a Fourier trans-

form of the displacement signal. This approach works well

if the signal is stationary and if the subject is nearly

motionless. In the Fourier domain, there is a peak at the

breathing frequency and a peak at the heart rate frequency.

However, even without movement, the peak from respira-

tion can obscure that from cardiac activity. When gross

body movement occurs, both peaks can be easily lost in the

large low frequency peak that movement creates.

More realistically, the heart and respiratory rates cannot

be assumed to be stationary, since no individual breathes

perfectly uniformly for each breath and there is an inherent

arrhythmia in the cardiac pattern of all healthy people.

Therefore, an analysis involving time and frequency [1]

becomes a more appealing approach.

In previous research [5, 10], wavelets have been used to

decompose the displacement signal. Wavelets provide

excellent time resolution for rapid events in time, such as

heartbeats, and good frequency resolution for slower events

in time, such as breathing [16]. However, wavelets alone

cannot always find every heartbeat. Therefore, statistical

methods lend themselves nicely to enhance this applica-

tion. The rest of this paper will discuss a statistical method

to find cardiac rhythm as accurately as possible.

2 Methods

2.1 Pre-processing

To find heart rate, we first gather a chest displacement

signal, i.e., the movement of the chest perpendicular to the

frontal plane. To obtain a chest displacement signal, we

used a 94-GHz continuous-wave millimeter-wave interfer-

ometer [2] and a National Instruments USB-9239 24-bit

analog-to-digital converter with a sampling rate of

5,000 Hz to collect in-phase (I) and quadrature (Q) com-

ponents of the reflection. Details of the system can be found

in [10]. All processing was performed in MATLAB [9].

The received reflection from the millimeter-wave signal,

when aimed at the chest, is a combination of several vector

components [11, 10]. These components include reflections

from stationary or moving objects not related to the sub-

ject. The vector component due to chest wall motion can be

isolated using circle-fitting in the in-phase–quadrature

space. Then, using simplifying assumptions about noise

and interference, the reflection received by the antenna due

to chest motion can be used to find the chest displacement

signal given by:

Displacement ¼ k0

4p
� unwrap arctan

Q

I

� �� �
; ð1Þ

where k0 ¼ 2pc
x0
; c is the speed of light, x0 is the angular

frequency 94� 2p� 109 rads/s, and ‘‘unwrap’’ indicates

phase unwrapping to account for phase discontinuities

at ±p [9, 10].

Then, the displacement waveform is downsampled to

50 Hz and a one-level multi-resolution decomposition is

performed on the signal using a symlet 32 wavelet. The

detail signal (i.e. the high-pass portion of the decomposi-

tion) is then used for further processing. First, we take the

absolute value of the detail signal, and then pass it through

a moving-average filter of length 20. The entire pre-pro-

cessing can be seen in Fig. 1. This creates a signal with

peaks of varying amplitudes at most of the heartbeat tem-

poral locations [10]. To confirm all processing techniques,

an electrocardiogram was gathered concurrently with the

data in order to know where the actual heartbeats are

present.

2.2 Statistical processing

Since the heights of the peaks generated by the wavelet

decomposition vary greatly, and not all peaks are due to

heartbeats, and not all heartbeats have a corresponding

peak, statistical techniques are used to deal with the

variations.

The main idea is to analyze the pre-processed signal in

overlapping windows and to adapt the selection criteria for

a given peak based on the statistics in that window. The

statistical method that is used in each window is the gen-

eralized likelihood ratio test (GLRT) [15]. This test com-

pares two statistical distributions and characterizes a given

value as belonging to one or the other based on a threshold.

The pre-processed data X are a sequence of discrete

values in the set of real numbers (X 2 R). For our tests, we

Fig. 1 Pre-processing flowchart, where downarrow downsampling, Abs(�) absolute value operator, and MA20 20-point moving-average filter
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postulated that X can belong to one of two probability

distributions:

heartbeat not present: f0ðxÞ
heartbeat present: f1ðxÞ;

which means that the two hypotheses for the likelihood test

are:

H0 : X is distributed as f0ðxÞ
H1 : X is distributed as f1ðxÞ:

If X = x is observed, the likelihood ratio test statistic is:

LðxÞ ¼ f0ðxÞ
f1ðxÞ

; x 2 R:

If L(x) [ 1, then we choose H0, and if L(x) \ 1, then we

choose H1.

Using this framework, we analyze the signal by parts.

First, a window of the pre-processed signal is selected.

Then, all of the maxima are found. We assume, with no other

knowledge, that all maxima correspond to heartbeats.

‘‘Heartbeat’’ (HB) values are selected as those points that are

within 1/4 of the distance from a peak to the previous peak

and within 1/4 of the distance from the same peak to the next

peak; ‘‘non-heartbeat’’ (nHB) values are selected as all the

rest of the points. This process is illustrated in Fig. 2a.

Then, a probability density function is fitted to the data

for both HB and nHB values. For the density function, we

chose the log-normal distribution:

f ðxÞ ¼ 1

x
ffiffiffiffiffiffiffiffiffiffi
2pr2
p e�

½lnðxÞ�l�2

2r2 :

We selected this distribution because our data are

always positive (due to the absolute value operation in the

pre-processing) and because a normal fit was good in

general, as shown in Fig. 2b. We did not want to use a

nonparametric distribution in order to not give emphasis to

outlying values, but rather to concentrate on the values

around the mean of the distribution, and also to create a

smooth fit with only one intersection.

Then, we find the first intersection of the distributions.

This value is used to determine the threshold for deciding

whether a given value belongs to HB or nHB:

LðxÞ ¼ f0ðxÞ
f1ðxÞ

[
H0

\
H1

a ð2Þ

where a is a scaling of the threshold, where the optimal

value is determined through experiment.

Using this threshold, we keep only the peaks in the pre-

processed signal that are greater in value than the thresh-

old. We also eliminate peaks that have a spacing of less

than 0.3 s in order to eliminate heartbeats faster than 200

beats per minute (bpm), since that is above the maximum

for people over 20 years of age according to the conven-

tional formula: max heart rate = 220 - age.

This process is done for the whole signal in overlapping

sliding windows. At the end, all of the maxima of the pre-

processed signal that are above the threshold and slower

than 200 bpm in their respective windows are concate-

nated. After this, the entire signal is once again checked for

heartbeats that are faster than 200 bpm, since the concat-

enation process might place heartbeats too close together

due to the overlapping windows.

Then, we eliminate heartbeats that are too close together

as compared to the rest of the heartbeats in the signal. To

do this, we find the average spacing of the heartbeats

(dAvg), and eliminate those that are closer together than

c�dAvg. We also eliminate heartbeats that are too far apart

as compared to the rest of the heartbeats in the signal. We

once again use dAvg and eliminate those that were farther

Fig. 2 Statistical data. a Initial heartbeat and non-heartbeat selection.

b Histogram of HB and nHB values and fitted log-normal

distributions
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apart than d�dAvg. The factors c and d are found exper-

imentally as most often eliminating false positive detec-

tions. Here, c is a factor to eliminate fast heartbeats, which

could be caused by noise, and d is a factor to eliminate

heartbeats in long intervals, since a long interval without

heartbeats indicates an unclean, highly nonstationary sig-

nal, which is prone to error. The reasoning for performing

these pruning steps is that we want to keep only heartbeats

that look very much like real heartbeats, thus eliminating as

many false positives as possible. The remaining heartbeats

belong to the set of confident heartbeats (c-HB).

After pruning, we add heartbeats back in based on the

spacing in c-HB. If the spacing between any heartbeats in

c-HB is greater than d�dAvg after pruning, we add in

equidistantly spaced points based on the spacing of the

heartbeats in c-HB.

Finally, we find a new dAvg for the new c-HB, go

through the heartbeats and again prune heartbeats that are

too close together based on dAvg. Then, we again add in

heartbeats in large intervals based on dAvg. This process is

repeated three times to get to the final heartbeat temporal

locations (f-HB).

2.3 Filter length optimization

The moving-average filter was chosen to have a length of

400 ms, based on an average, calm, adult human’s heart

rate. If the heart rate is higher, the moving-average filter

might blur together multiple heartbeats. If the heart rate is

lower, the moving-average filter might create multiple

peaks at each heartbeat. Therefore, it becomes necessary to

use an adaptive length for the moving-average filter.

Since there is no prior knowledge of the heart rate, the

adaptation has to be based entirely on the pre-processed

signal. Since each peak corresponds to a heartbeat, there

are also constraint equations corresponding to maximum

and minimum heart rate. The equations for this process are

presented here, and explained below:

s ¼ Pre-processed signal ð3Þ

sd ¼
ds

dt
ð4Þ

d ¼ 1

N � 1

XN

i¼2

ls
i � lsi�1

� �
ð5Þ

h ¼ 1

N

XN

i¼1

ps
i

� �
� 1

M

XM

i¼1

vs
i

� �
ð6Þ

hd ¼
1

Nd

XNd

i¼1

psd
ið Þ � 1

Md

XMd

i¼1

vsd
ið Þ; ð7Þ

where N is the number of peaks in s, M is the number of

valleys in s, li
s is the ith peak location in s, pi

s is the ith peak

value in s, and vi
s is the ith valley value in s. All of the

variables are functions of Lma, the length of the moving-

average filter, since the length of the filter determines the

peak and valley locations in s.

Using Eqs. (3)–(7), the optimization problem can be

formulated as:

L�ma ¼ arg min
Lma

Lma þ N þ Nd � h� hd ð8Þ

s:t: d [ 15; Lma\75; Lma [ 0: ð9Þ

For the optimization, we try to make the peaks as distinct

as possible. To do that, we maximize the difference

between the peak and valley heights [Eq. (6)] while also

minimizing the length of the filter [Eq. (8)] to get as many

distinct peaks as possible. At the same time, we also

maximize the difference between the peak and valley

heights of the derivative of the pre-processed signal [Eq.

(7)] in order to get as smooth a signal as possible. In

addition, we minimize the number of peaks of the signal

and its derivative [Eq. (8)] in order to prevent the filter

length from getting too small. The optimization is further

constrained to create a heart rate between 40 and 200 bpm.

At a sampling rate of 50 Hz, this corresponds to the dis-

tance between adjacent peaks [Eq. (5)] being greater than

15 samples and the length of the moving-average filter

being less than 75 samples [Eq. (9)]. Solving Eqs. (8) and

(9) gives the optimum length of the moving average filter,

Lma
* , for the given dataset.

2.4 Result verification

In order to get a consistent measure of the performance of

the algorithm, we created a verification algorithm. First, we

find the QRS complexes in the concurrently-gathered ECG

using the Pan–Tompkins algorithm [13] (HB in Fig. 3).

Then, each QRS complex temporal location is offset by

0.16 s, an empirically-determined value to account for the

time between the QRS-complex and the propagation of the

heart motion to the chest wall (oQRS in Fig. 3). Next, each

calculated heartbeat temporal location is compared to the

offset QRS complex temporal locations. If a heartbeat falls

within 0.4 s of the offset QRS complex, it is counted as a

true positive (TP); otherwise, it is counted as a false

positive (FP). If there is no calculated heartbeat within 0.4 s

of the offset QRS complex, it is counted as a false negative

(FN). True negatives (TN) do not apply to this data, as we

are only interested in finding heartbeats, not their absence.

The whole process can be seen in Fig. 3.

Using these measures, we are able to find the recall (or

sensitivity) as

Recall ¼ TP=ðTPþ FNÞ ð10Þ

and precision as
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Precision ¼ TP=ðTPþ FPÞ: ð11Þ

These measures are good indications as to the accuracy of

the algorithm, as they not only take the heart rate into

account, but also the actual heartbeat temporal locations. If

we were to simply use the average of the inter-beat spac-

ings to calculate the heart rate, a lot of false positives

followed by a lot of false negatives might give an accurate

heart rate, since large spacings and small spacings average

out to normal spacings. However, using this verification

algorithm, only accurately placed heartbeats contribute to

the true positive count.

3 Results

For testing the methods, we received approval from

Northwestern University’s Office for the Protection of

Research Subjects (IRB Project Number: STU00051704).

We first tested the statistical algorithm on data gathered

from 5 m away with the subject sitting in a chair and

breathing normally.

Figure 4a shows the resulting heartbeat temporal loca-

tions as calculated by our algorithm. This shows a recall of

100 % and a precision of 100 %. The previous, non-sta-

tistical algorithm [10], also calculated the heartbeats with

good accuracy for this sample (not shown here). At 8 m

away, the previous algorithm [10] had trouble. However,

the new algorithm was able to place heartbeats accurately,

as shown in Fig. 4b. This is because the data were noisy,

which affected the peaks created by the wavelet transform

during pre-processing. Since the previous algorithm relies

solely on those peaks, it could not place the heartbeats

accurately. However, the new method used the statistics of

the peaks to find most missing heartbeat temporal locations

with a recall of 92.3 % and a precision of 100 %.

The most important result, however, was the ability of

the algorithm to process data of a moving subject. In most

previous research on this topic, the subject was required to

sit against a chair back or stand against a wall to minimize

extraneous motions, which would overshadow the motions

of the chest due to cardiac activity. In [11], the subject was

allowed to move, but reliable heart rate extraction was not

able to be performed. With this algorithm, we were able to

process data on a slowly moving subject (up to 15 cm/s)

with movement toward and away from the antenna and also

from side to side.

The displacement of the chest wall due to cardiac

activity is on the order of 0.1 mm, while that due to

Fig. 3 Flowchart of verification algorithm

Fig. 4 ECG with superimposed heartbeats gathered at a 5 m with

breathing using the new method, and b 8 m with breathing using both

the new method and the original, non-statistical method
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respiration varies from approximately 4 to 12 mm [3]. The

movement that we processed was more than 1 m, which is

thousands of times greater than that due to a heartbeat.

For our tests, we had five subjects. Their characteristics

can be seen in Table 1. They all followed the same pro-

tocol, described as follows. Starting out seated 3.5 m from

the sensor for about 15 s, the subject then stood up and

walked slowly toward the sensor until 2 m away. After

that, the subject moved backward until 4 m from the sen-

sor, and remained at that distance for about 40 s. Finally,

the subject walked more quickly to a distance of 2 m from

the sensor.

As mentioned previously, the movements of the subject

are much larger than the movements of the chest due to

cardiac activity. To find the temporal locations of the

heartbeats, we used the algorithms described above with a

sliding window length of 4 s and an overlap of 2 s. In order

to test the efficacy of the algorithm, we performed a leave-

one-out cross validation. First, we created a precision–

recall curve (similar to the receiver operating character-

istic [ROC] curve in detection theory) by varying a, c, and

d (Sect. 2.2) for four out of the five subjects, an example of

which is shown in Fig. 5a. As can be seen, the precision–

recall curve passes close to the top right corner, which is a

very good indicator of an accurate algorithm. We chose the

operating point as being farthest from the origin, and used

the corresponding values of a, c, and d to test the last

subject. This was performed five times, leaving each of the

subjects out. In addition, this same kind of analysis was

performed for data with no movement, where the subjects

sat at distances of 2–9 m in increments of 1 m while either

breathing or holding their breath. A sample precision–

recall curve for that data can be seen in Fig. 5b.

We then used the verification algorithm to check the

results. Table 2 shows the number of true positives, false

positives, false negatives, recall, and precision for each of

the five subjects, along with the totals. In the state column,

m means the subject is moving, nm means the subject is not

moving, b means he/she is breathing, and nb means he/she

is not breathing.

4 Discussion

As seen in Fig. 5, the algorithm performs well at the

chosen operating point. As expected, the curve in Fig. 5b

passes closer to the top right corner than the curve in

Fig. 5a, because the data with movement are harder to

process than the data without movement.

There are some uncommon characteristics of the curve

for the data without movement, in that it has some

abnormally low precision values for specific recall values,

most notably when recall is approximately 0.7. This is due

to the various pruning and adding steps that were per-

formed in the algorithm, making the error rate a non-

monotonic function of the thresholds. However, this does

not hinder the algorithm, since the operating point is cho-

sen at a higher recall, where the precision is also higher.

In the presence of movement, the recall tends to be higher

than the precision because the algorithm interpolates erro-

neous heartbeats, as there are not as many ‘‘confident’’

heartbeats in the presence of large movements, as could be

expected. Subject 3 had a large number of false negatives

because the heartbeats were not placed close enough to the

Table 1 Description of subjects

Subject # Gender Age Height (cm) BMI

1 F 20 164 18.3

2 M 24 180 26.5

3 M 25 173 22.8

4 M 26 168 20.2

5 M 57 173 25.5

Fig. 5 Precision–recall curves

for a movement data, and b data

with no movement
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‘‘true’’ heartbeat temporal locations because they were

interpolated over a large area of ‘‘unconfident’’ heartbeats. It

is therefore important to notice that the verification is strictly

on heartbeat temporal locations, as opposed to rhythm.

The spread of heartbeat temporal locations as detected

by our algorithm can be seen in Fig. 6. As expected, when

the subject is stationary, the heartbeat temporal locations

are very consistent (as was shown in Fig. 4a, b). When

there is movement, however, the detection is still very

good, but the spread of temporal locations is greater.

Although there is a consistent drop-off of discrepancy,

these measurements are still not accurate enough for

medical metrics such as heart rate variability, which

requires very accurate inter-beat times. This is something

that we are further researching in two ways: improving the

localization of ‘‘confident’’ heartbeats, and increasing the

complexity of the statistical algorithm. The former

improvement requires better processing algorithms. The

latter improvement requires taking more information into

account, such as higher moments of the distributions (as

opposed to just looking at the first moment as it is now).

When using our algorithm, the parameters that could be

adjusted are the size of the moving window, and the

Table 2 Results of proposed algorithm

Subj. State TP FP FN Rec (%) Prec (%)

1 m, b 108 18 5 95.6 85.7

2 m, b 134 16 5 96.4 89.3

3 m, b 275 4 53 83.8 98.6

4 m, b 176 24 4 97.8 88.0

5 m, b 145 16 10 93.6 90.1

1 nm, nb 256 25 39 86.8 91.1

2 nm, nb 367 8 9 97.6 97.9

3 nm, nb 373 27 24 94.0 93.3

4 nm, nb 285 47 11 96.3 85.8

5 nm, nb 370 22 12 96.9 94.4

1 nm, b 272 45 23 92.2 85.8

2 nm, b 323 24 34 90.5 93.1

3 nm, b 351 26 44 88.9 93.1

4 nm, b 265 11 28 90.4 96.0

5 nm, b 368 17 14 96.3 95.6

Total m, b 838 78 77 91.6 91.5

Total nm, nb 1,651 129 95 94.6 92.8

Total nm, b 1,579 123 143 91.7 92.8

All N/A 4,068 330 315 92.8 92.5

Fig. 6 Probability mass

histogram of differences

between calculated heartbeat

temporal locations and ‘‘true’’

heartbeat temporal locations

when a the subject is

suppressing breathing, b the

subject is breathing normally,

and c the subject is breathing

normally and moving
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overlap between adjacent windows. We empirically chose

a window length of 4 s with an overlap of 2 s. A 4-s

window is small enough to factor in the statistics of local

phenomena, such as respiratory sinus arrhythmia, but also

large enough to build up statistics to separate ‘‘confident’’

heartbeats from ‘‘unconfident’’ ones. The overlap of 2 s

ensured that we did not miss any heartbeats that may have

been ‘‘unconfident’’ compared to the neighboring beats on

one side but ‘‘confident’’ compared to beats on the other

side.

The statistical algorithm represents an improvement

over the method in [10] because it looks at the statistics of

the signal as opposed to finding peaks of the pre-processed

signal blindly. Although not all heartbeats are detected, the

placement of inter-peak heartbeats is accurate for the most

part. Some heartbeat temporal locations are more difficult

to predict given phenomena such as respiratory sinus

arrhythmia, which creates a non-uniform spacing and can

cause problems if there are no ‘‘confident’’ heartbeats for a

long enough period of time.

Most importantly, we have presented an algorithm that

works on moving subjects. This has not been previously

done to the authors’ knowledge. Future work will focus on

more consistent heartbeat temporal location calculations.

It should be noted that this procedure works only for

healthy adults. For subjects exhibiting intermittent long

inter-beat intervals, this method would add in heartbeats in

the large intervals and create a healthy-looking output.

Also, young subjects might have a heart rate faster than

200 bpm, in which case the algorithm would prune heart-

beats in order to enforce a rate under 200 bpm. However,

although this algorithm may not be ready for medical

diagnostics, it would perform well in a security setting

where the important characteristic is the subject’s average

heart rate.

This algorithm, though used in post-processing here, can

be readily adapted to real-time processing. The average

time to run this algorithm over an 8-s window was 0.2564 s

(computed as the average time of 100 runs) on a Windows

7 64-bit machine with an Intel W3580 CPU with 12 GB of

RAM. This means that heart rate and heartbeat temporal

locations can be computed approximately four times every

second, with an initial 8-s delay.
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