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Abstract. Passive millimeter-wave (PMMW) imagers using a single radio-
meter, called single pixel imagers, employ raster scanning to produce
images. A serious drawback of such a single pixel imaging system is the
long acquisition time needed to produce a high-fidelity image, arising from
two factors: (a) the time to scan the whole scene pixel by pixel and (b) the
integration time for each pixel to achieve adequate signal to noise ratio.
Recently, compressive sensing (CS) has been developed for single-pixel
optical cameras to significantly reduce the imaging time and at the same
time produce high-fidelity images by exploiting the sparsity of the data in
some transform domain. While the efficacy of CS has been established for
single-pixel optical systems, its application to PMMW imaging is not
straightforward due to its (a) longer wavelength by three to four orders
of magnitude that suffers high diffraction losses at finite size spatial wave-
form modulators and (b) weaker radiation intensity, for example, by eight
orders of magnitude less than that of infrared. We present the develop-
ment and implementation of a CS technique for PMMW imagers and
shows a factor-of-ten increase in imaging speed. © 2012 Society of Photo-Optical
Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.51.9.091614]
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1 Introduction
Passive millimeter wave (PMMW) imaging has many appli-
cations, such as remote sensing of the Earth’s resources, air-
craft landing in optically obscure weather, and security point
inspection of concealed weapons in humans.1 The Earth’s
resources that may be sensed by passive MMWs include
terrain mapping, soil moisture and polar ice mapping, ocean
surface sensing, as well as atmospheric water vapor and
temperature profiling as a function of altitude for climate
modeling and weather sensing.2 The underlying principle
is the measurement of Planck’s blackbody radiation of mate-
rials at millimeter wavelengths. The main advantage of pas-
sive MMW imaging is that it provides information about
ground-based targets under all weather conditions; optical
systems [visible and infrared (IR)], on the other hand, require
clear atmospheric conditions for reliable operation. For
example, the atmospheric attenuation of MMW frequencies
at sea level is 0.07 to 3 dB∕km in drizzle and fog, whereas it
is one to three orders of magnitude higher for optical fre-
quencies (exceeding 100 dB∕km in foggy conditions).3–5

Excellent image contrast is obtained in outdoor environ-
ments due to cold sky-reflected radiation by targets. For
example, the apparent temperature of the sky in clear weather
at 94 GHz is 70 K in comparison to 220 K at infrared wave-
lengths. Even at the same ambient temperature, there exists
variation in MMW thermal contrast of objects because of
their emissivity differences at these wavelengths, e.g., the
emissivity6 of metal is ≈0, water 0.4, wood 0.4, and concrete
0.8. Signal “washouts” do not occur since the apparent

temperature between the background and the object is rarely
the same.

In addition to imaging, passive MMWs can be used to
obtain spectroscopic signatures of chemicals based on molec-
ular rotational energy transitions.7 With a 16-channel filter
bank in the 146 to 154 GHz band, we have measured the
150 GHz spectral line of nitric oxide from a test stack at a
distance of 600 m from the radiometer.8 We upgraded the
MMW spectrometer into an integrated imaging and spectros-
copy system for broad area search and detection of nuclear
facilities.9,10 Figure 1 is an example of an outdoor image of a
dome-shaped building at 300 m, in which the passive MMW
image is overlaid on optical image using augmented reality
technique.

A major disadvantage of such a single-pixel imaging sys-
tem is the long scanning time that it takes for image acquisi-
tion. For example, the 100 × 100 pixel image of Fig. 1 with
1 s integration time per pixel took about 3 h. Such a long
imaging time diminishes the imager’s value for applications
involving nonstationary objects. We have investigated the
application of compressive sensing (CS) techniques in this
paper as they have the potential to reduce the image acquisi-
tion time by a factor of 10 or more.

2 Compressive Sensing with Coded Aperture
Masks

CS involves exploiting the sparsity or compressibility of an
image in some transform domain such that one can utilize
fewer measurements (fewer samples) than the ones required
for conventional imaging, yet the image can be reconstructed
with minimal loss of information. While conventional
data compression techniques, such as JPEG, use bandwidth0091-3286/2012/$25.00 © 2012 SPIE
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compression for efficient storage and communication pur-
poses after a full image is collected, CS techniques exploit
compression in signal/image structure and collect fewer data,
thus saving on imaging time.11

In order to guarantee lossless image reconstruction by CS
theory, the acquisition matrix must satisfy the restricted iso-
metry property (RIP).12–14 Matrices that are known to satisfy
the RIP condition with high probability include matrix ele-
ments drawn from Gaussian independent and identically dis-
tributed (iid) random numbers.14 Because iid-based spatial
light modulation is difficult to implement, binary representa-
tion of the iid random numbers is used in practice. Digital
micromirror devices (DMD) have been used in single-pixel
optical cameras in which random masks are created by elec-
tronically orienting them into one of two reflecting positions.

Unlike DMDs that are individually controlled to reflect
the incident light beam toward (on) or away (off) from the
imaging lens, one may use coded apertures with binary ele-
ments representing transmission (on) or reflection (off) of the
light. Feasibility of CS with such masks was tested in an
activeMMW system by inserting a sequence of prefabricated
printed circuit masks in a collimated MMW beam and col-
lecting mask-modulated radiation through a dielectric object
to be imaged.15 The manual introduction of masks as above
defeats the purpose of fast imaging by CS. In this paper, we
present for the first time a novel method of implementing CS
in passive MMW imagers. Compared to active MMWs, pas-
sive MMW radiation is very weak and incoherent; as a result,
the quasioptical components in passive MMW systems must
be carefully designed to minimize diffraction losses by the
masks and maximize the signal-to-noise ratio (SNR).

We used Hadamard transform masks as coded apertures
for light modulation as they offer a practical means of intro-
ducing random selection of Hadamard patterns using a single
extended mask. Like random binary numbers, randomized
Hadamard patterns, such as the scrambled block Hadamard
ensemble, are also known to satisfy the RIP property.16

While our imaging setup, in principle, can employ scrambled
block Hadamard ensemble, we followed a slight variation of
it in that the Hadamard patterns were chosen from a random
selection of the rows of a cyclic S-matrix derived from the
Hadamard transform theory.17 The main advantage is that the
reconstruction problem becomes linear in the form of simple
matrix manipulation of the S-matrix, significantly reducing
the computation burden and time involved with the nonlinear
minimization reconstruction algorithms used in traditional
CS methods.

2.1 Design and Fabrication of Hadamard Masks

Instead of using M random masks one at a time, a single
extended Hadamard mask, He, may be constructed that
encompasses all possible Hadamard patterns as submatrices.
The procedure to construct an extended Hadamard mask is as
follows. A cyclic S-matrix of size pq × pq, where p and q
are prime numbers and q ¼ pþ 2, is formed using the twin
prime construction method by which a row of pq elements of
value 0 or 1 is produced by a set of rules on the i’th element
based on the remainders of i∕p and i∕q.17 Once the first row
of S is formed, the S-matrix can be completed by shifting the
row by one element to the left and filling the missing right-
most element in a circular pattern. Taking p ¼ 5 and q ¼ 7
as an example, Fig. 2(a) gives the S-matrix in which black
represents 0 and white 1. To form the extended Hadamard
mask, the elements of the first row of the S-matrix are folded
into a p × q matrix that is concatenated to the right and
below to form a ð2p − 1Þ × ð2q − 1Þ matrix as shown in
Fig. 2(b). From the extended Hadamard mask, one can ran-
domly choose pq Hadamard acquisition matrices Hi, i ¼ 1
to pq by matching the top left corner of a template of size
p × q to the location ðk; lÞ in He, where i ¼ ðk − lÞqþ l
corresponds to the i’th row of the S-matrix.

The design of mask size and pixel resolution is based on
the following considerations:

Fig. 1 Passive MMW image (a) of an outdoor scene overlaid on opti-
cal image (b); the scene consists of a dome-shaped building at 300 m
from the imager.

Fig. 2 The elements of cyclic S matrix (a) and extended Hadamard matrixHe shown by the box (b) for p ¼ 5 and q ¼ 7. The dark shades represent
0 and the light shades 1. The matrix elements are indentified by numbers 1 to 35 in (b).
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• Pixel size, s is such that s > λ∕2 to reduce diffraction
losses by subwavelength size holes (where λ ¼ 2 mm
is the wavelength of millimeter waves at 150 GHz)

• Mask size, ps × qs, should match the MMW image
plane at the mask location

• Image pixels >40 × 40 for adequate image resolution
• p and q with q ¼ pþ 2 must be prime numbers for

cyclic S matrix generation

We used p ¼ 41 and q ¼ 43 with a pixel size of 1.24 mm
and produced an extended cyclic mask of 81 × 85 pixels
of size 10.04 × 10.53 cm. Each p × q mask is of size
50.84 × 53.32 mm. The extended Hadamard mask was
fabricated using chrome coating on a millimeter-wave trans-
parent quartz plate, as shown in Fig. 3. The colored boxes
show two of the 1763 possible Hadamard patterns that
can be created by exposing parts of the mask.

3 Compressive Sensing Passive MMW Imager

3.1 Imager Setup

Figure 4 shows a two-lens passive millimeter-wave setup for
CS implementation using Hadamard masks. The extended
Hadamard mask is placed at the image plane of a six-in.
lens, where the image of a distant target is formed. A
metal plate (template) with a hole of size p × q is placed in

front of the mask, which defines the exposure window. The
extended mask is controlled by a two-axis translation stage to
expose different mask patterns for compressive data collec-
tion, one for each measurement. A second lens of 1-inch
diameter collects the modulated radiation field through the
Hadamard mask and focuses it onto the multichannel radio-
meter. The positions of the lenses and the mask are governed
by the lens equation: 1∕fr ¼ 1∕di þ 1∕do, where fr is the
focal length of either of the lenses, and di and do are the
image and object distances, respectively. Because the targets
used in these experiments do not have spectral features, we
averaged all 16 spectral channels, which offers an increase
of SNR by a factor of four.

3.2 SNR Analysis of CS Imager Setup

It is important to compare the SNR between the raster scan-
ning and CS systems to ensure that the reduction in imaging
time obtained with the latter does not come at the expense of
the radiometer sensitivity. A reduction in sensitivity by a fac-
tor x in the CS setup is equivalent to a reduction in the inte-
gration time by a factor of 1∕x2 in the raster scanning setup,
as the sensitivity of a Dicke-switched radiometer is given by:
ΔT ¼ 2TN∕

ffiffiffiffiffiffi
Bτ

p
, where TN is the noise temperature of the

receiver, B is the predetection bandwidth, and τ is the post-
detection integration time. For example, if the CS setup
offers a reduction in imaging time by a factor of 10 at a
cost of 3.16 times less in sensitivity (3.16ΔT), the same
saving in imaging time can be obtained with conventional
imaging by reducing the integration time by ten times for an
equivalent sensitivity of 3.3ΔT. However, if the raster scan-
ning system uses a stop-and-go implementation for data
collection at each pixel, the total acquisition time including
the translation time of the raster scanning system can be
substantially longer than that of the CS system.

Figure 5 shows ray tracing diagrams of raster-scanned and
CS-based signal acquisitions. While the raster scanning
system collects the radiation from each pixel of the target,
the CS system in principle sums up the radiation from
∼N∕2 pixels (as approximately half of the pixels in the
mask are open) of the target. If there were to be no loss due
to the mask or in the radiation collection from the target to
the radiometer, the SNR of the CS system would be

ffiffiffiffiffiffiffiffiffi
N∕2

p
times the raster scanned system as the noise is averaged
while the signal related to the target temperature remains the
same. In practice, however, radiation losses occur due to
(a) diffraction effects from the subwavelength-sized mask

Fig. 3 An extended Hadamard mask of size 81 × 85 pixel fabricated
on a quartz plate with chrome coating. A 41 × 43 pixel mask area
such as the ones indicated by the colored boxes is exposed for each
acquisition.

Fig. 4 Compressive sensing setup for passive MMW imaging.
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apertures and (b) inefficient radiation collection by the finite-
size lenses. The diffraction loss due to the mask may be ana-
lyzed as follows. Each aperture in the mask can be treated as
a dipole antenna18 radiating over a spherical area and only
part of this radiation is collected by the 1-in. diameter lens.
The actual intensity of each pixel collected by the radiometer
can be expressed as: Ĩpixel ¼ wIpixel, where Ipixel is the inten-
sity of a single pixel, and w is the fraction of the intensity
collected by the radiometer. For the experimental setup in
Fig. 4, w is the ratio of the area of the focusing lens and that
of the spherical surface at a distance do. Accordingly,
w ¼ Alens∕4πd2o ¼ 4πr2lens∕4πd2o ¼ ðrlens∕doÞ2. For rlens ¼
1.27 cm and do ¼ 12.7 cm, w ¼ ðrlens∕doÞ2 ≈ 1% and
Ĩpixel ¼ wIpixel ≈ 1% × Ipixel. The total intensity from all
pixels collected by the radiometer is thus given by Ĩ ¼
0.5wpqĨpixel ≈ 0.5% × pðpþ 2Þ × Ipixel, where we have
assumed uniform intensity from all the pixels. For p ¼ 41,
we get Ĩ ≈ 0.5% × pðpþ 2Þ × Ipixel ≈ 9Ipixel. Hence, the
corresponding improvement in SNR is estimated as three
times that of the raster scanned imagers. The two-lens
setup we have used is not an optimal design for radiation
collection since a large portion of the radiation from the
target does not reach the radiometer. With better collection
efficiency and higher pixel count N, the SNR of the CS sys-
tem is expected to be higher than that of the raster-scanned
setup. Furthermore, there is a tradeoff between pixel size
(image resolution) and SNR; with a larger aperture (lower
resolution), the diffraction losses will be less, resulting in
a higher w and, in turn, a higher SNR.

4 Image Reconstruction

4.1 Image Reconstruction from Full Hadamard
Acquisitions

If a complete set of N acquisitions is obtained by fully raster
scanning the extended Hadamard mask, the image recon-
struction consists of simple matrix manipulations as given
below. The measured intensity vector Im using Hadamard
masks may be expressed as19

Im ¼ S ⋅ Is; (1)

where Sðpq xpqÞ is the cyclic S-matrix realized by the
Hadamard mask and Isðpq × 1Þ is the scene intensity vector,

which can be reconstructed from the full set of Hadamard
measurements by

Is − S−1Im: (2)

For a given Hadamard mask size, the S matrix in Eq. (2)
can be predetermined from the Hadamard sequence, so the
image reconstruction is very fast.

To test image formation and reconstruction, we used a
single lens imaging setup as in Fig. 6, with a light bulb (ther-
mal light source) illuminating an object and the Hadamard
mask placed behind the object in close proximity. The rela-
tive sizes of the object (at the mask) and images for the
single-lens setup may be determined using the ray tracing
diagram in Fig. 6. According to the lens equation, the object
and image distances d0 and di are given by 1∕doþ
1∕di ¼ 1∕f, where f is the focal length. With
do ¼ 12.7 cm and f ¼ 2.54 cm, di ¼ 3.175 cm. The mag-
nification is given by M ≡ b∕a ¼ di∕do ¼ 1∕4, where b
and a are the object and image sizes, respectively. For an
antenna of radius rantenna ¼ 0.3175 cm, the field of view
(FOV) is FOV ≡ 2a ¼ 2b∕M ¼ 2rantenna∕M ¼ 8rantenna ¼
2.54 cm. The imaging setup we used provides only
2.54 cm FOV; as a result, we covered the imaging area
for this setup with a metal plate having a 2.54 cm
diameter hole. In order to expand the FOV to the full extent
so that it covers the size of the Hadamard template
(50.84 × 53.32 mm), the distances d0 and d1 may be chan-
ged to 22.86 and 2.8575 cm, respectively, keeping the lens
diameter the same.

We first simulated the Hadamard transform and image
reconstruction process for an object geometry consisting
of a metal plate with a circular hole of diameter 2.54 cm
and a 3-mm wide rectangular metal strip across the middle.
Figure 7(a) gives the binary coded image of the object with 1
representing the hole and 0 the metal portion, and Fig. 7(b)
is its Hadamard transformed image according to Eq. (1)
after folding the pq × 1 vector into a p × q matrix. The
reconstructed image from Hadamard transformed data using
Eq. (2) was exact and identical to Fig. 8(a) as there was no
measurement noise for this ideal case.

We next obtained a full set of pq ¼ 1763 Hadamard
acquisitions by raster scanning the Hadamard mask.
Figure 8(a) gives the Hadamard transformed image, and
Fig. 8(b) shows the reconstructed image using Eq. (2). An
excellent agreement is seen between the simulated [Fig. 7(b)]
and experimental [Fig. 8(a)] Hadamard transformed images.

Fig. 5 Signal acquisition by (a) raster scanned camera and (b) CS-
based single-pixel camera.

Fig. 6 Proof-of-principle test with a thermal light source illuminating
an object consisting of a 2.54 cm diameter circular hole with a
3-mm wide rectangular metal strip.
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The reconstructed image of a circular hole with a horizontal
metal strip shows the feasibility of Hadamard imaging at
millimeter wavelengths with subwavelength resolution
(1.24 mm pixel size for 2 mm wavelength).

4.2 Image Reconstruction from Partial Hadamard
Acquisitions

Instead of fully scanning the extended Hadamard mask, one
may sample the mask randomly or sequentially every n’th

pixel in the horizontal and vertical directions. Figure 9 gives
a flowchart of data acquisition and image reconstruction
steps as the data acquisition proceeds. The measured data
with the Hadamard matrices are in the Hadamard transform
space. If the Hadamard transform space is complete with all
pq acquisitions, the reconstruction is simply multiplication
of the S−1 matrix with the unwrapped Hadamard transform
data as presented before. To reconstruct from an incomplete
data set in the Hadamard transform space (compressive

Fig. 7 Simulation of target geometry: (a) digitized image of circular hole with a strip in the middle and (b) simulated Hadamard transformed image.

Fig. 8 Experimental data: (a) Hadamard-transformed image and (b) reconstructed image.
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sampling), we introduce an iterative method of estimating the
missing elements in the Hadamard transform space: the
relaxation method, used in the numerical electrodynamics
field.20

The relaxation method is based on iteratively estimating
the two-dimensional (2-D) functional value hhFðx; yÞii at the
coordinate (x; y) from the nearest neighbors (straight) and
next nearest neighbors (cross),

hhFðx; yÞii ≡ 4

5
hFðx; yÞiS þ

1

5
hFðx; yÞiC;

where

hFðx; yÞiS ¼
1

4
½Fðxþ h; yÞ þ Fðx; yþ hÞ þ Fðx − h; yÞ

þ Fðx; y − hÞ�

hFðx; yÞiC ¼ 1

4
½Fðxþ h; yþ hÞ þ Fðx − h; yþ hÞ

þ Fðxþ h; y − hÞ þ Fðx − h; y − hÞ�

and h is the distance between the grid points.

ðx − h; yþ hÞ ðx; yþ hÞ ðxþ h; yþ hÞ
ðx − h; yÞ ðx; yÞ ðxþ h; yÞ

ðx − h; y − hÞ ðx; y − hÞ ðxþ h; y − hÞ
:

This is equivalent to applying a filter B at the grid (x; y):

B ¼

0
BB@

1 4 1

4 0 4

1 4 1

1
CCA ×

1

5 × 4
:

The iterative procedure consists of: 1. Enter the known
values, 2. guess the missing elements, 3. apply the filter B
and estimate the average value for (x; y), 4. reassert the
known values and iterate on step 3 until desired convergence
is reached. If the function is well behaved, convergence can
be shown by a Taylor series analysis.20

To test the relaxation technique, we sampled every third
column and third row of the Hadamard space, providing
1∕9 of the full acquisitions. Figure 10(a) gives the recovered
image in the Hadamard space, and Fig. 10(b) shows the
reconstructed image of the object. The recovered Hadamard
transformed image [Fig. 10(a)] from partial data compares
well with the full Hadamard transformed image in Fig. 8(a).
The reconstructed image of the object clearly shows the
circular hole with a strip in the middle; however, the geom-
etry looks somewhat distorted around sharp edges, which
gets improved with additional samples.

4.3 Progressive Compressive Sensing and
Real-Time Image Reconstruction

We developed a progressive sampling and image reconstruc-
tion method in which the Hadamard acquisition starts at
every n’th row and n’th column in the Hadamard space.
The relaxation technique is applied to fill the Hadamard
space from which the image is reconstructed after every

Fig. 9 Flowchart of Hadamard matrix acquisition and image
reconstruction from compressively sampled data.

Fig. 10 Reconstructed image from 1∕9th of samples: (a) relaxation method-based reconstruction of Hadamard space and (b) reconstructed image.
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sample in real time by Eq. (2), since the S-matrix is prede-
termined for a given p and q. If the image is not satisfactory,
we continue sampling the Hadamard space in between the
sampled points and reconstruct with (2N∕n) data, and so
on. The sample space is progressively increased until satis-
factory image quality is obtained. The complete image acqui-
sition and reconstruction software is implemented in
LabVIEW.

The reconstructed image quality using the progressive
sampling method was compared against the Bayesian
random sampling method that we had developed in the
past.21 A normalized mean squared error (NMSE) metric was
adopted for comparison of reconstructed images from partial
and full sets of samples. NMSE ¼ ΣN

i¼1ðIpðiÞ − IfðiÞÞ2∕
ΣN
i¼1ðIfðiÞÞ2, where IpðiÞ and IfðiÞ are the intensities of

the i’th pixel corresponding to the reconstructed images
from partial and full acquisitions, respectively.

Figure 11 provides the comparison of NMSE versus the
percent completion of the full acquisitions for the case of
(a) relaxation method with random Hadamard patterns,
(b) progressive sampling after each acquisition starting at
1∕64 of full samples, (c) progressive sampling after each

complete cycle in the Hadamard space, and (d) Bayesian
reconstruction from random Hadamard acquisitions. The
reconstructed image obtained after every complete cycle
(e.g., 1∕32; 1∕16; : : : ; 1) showed comparable or better per-
formance than the random sampling methods. In addition,
the computational time of the Hadamard transform-based
reconstruction is significantly less than that of the conven-
tional nonlinear minimization algorithms used in traditional
CS reconstruction methods.

4.4 Imaging with Two-Lens Setup

The single lens imager setup shown in Fig. 6 was used for
proof-of-principle testing of compressive sensing. To extend
it to a full imaging system, we used a two-lens CS setup as
shown in Fig. 4. To ensure high thermal contrast under
indoors, a 60 W incandescent lamp (thermal source) was
used as the target to be imaged. In outdoor conditions, how-
ever, such an artificial hot source is not needed as the cold
sky reflected radiation would offer excellent thermal con-
trast. Figure 12 gives the reconstructed image of the lamp
with (a) full and (b) 11% samples, and Fig. 13 gives that
with one quarter of the lamp blocked by a metal plate with
(a) full and (b) 11% samples. The reconstructed images with
11% samples compare well with those from full samples;
however, there is a slight distortion in the object geometry
due to the smoothing nature of the algorithm around sharp
edges.

5 Conclusions
We have developed a CS approach for single-pixel passive
millimeter wave imaging; it offers the potential to reduce the
image acquisition time by a factor of 10 or more, obtain sub-
wavelength pixel resolution, and achieve better SNR than
with raster scanned systems. It is based on Hadamard trans-
form masks for spatial intensity modulation, which allows
for near real-time image reconstruction from partial samples.
The traditional CS methods use acquisition matrices that
satisfy the RIP or incoherence property that guarantees

Fig. 11 Comparison of normalized mean square error (MSE) for
progressive sampling and conventional random sampling methods.

Fig. 12 Reconstructed image of lamp with (a) full and (b) 11% samples.
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accurate image reconstruction with nonlinear minimization
algorithms. The Hadamard patterns we employed for image
acquisition would fit the CS framework if we had used, for
example, a scrambled block Hadamard ensemble. While our
imaging setup, in principle, can use such random acquisition
matrices, we followed a slight variation of it in that the
Hadamard patterns were chosen from a random selection of
the rows of the S-matrix. The advantage we gained was the
feasibility of real-time (relative to the integration time) image
reconstruction as the reconstruction problem became linear,
significantly reducing the computational complexity.

We used a Hadamard mask of 41 × 43 pixels, with pixel
size of 1.24 mm, about half the wavelength of our 146 to
154 GHz radiometer. To introduce different Hadamard
masks in the MMW beam path for compressive sensing,
we designed an extended Hadamard mask of 81 × 85 pixels;
a two-axis translational stage was used to expose different
submasks of size 41 × 43 from the extended mask. Images
were first reconstructed from a full set (1763) of Hadamard
acquisitions. We devised an iterative relaxation method for
image reconstruction from partial Hadamard acquisitions;
the Hadamard space is efficiently extrapolated by a numer-
ical relaxation procedure and the image reconstruction then
uses standard (full set) inversion of the S-matrix. The recon-
structed image of the object compared well in quality with
the original image with as little as 11% of the full samples.
We extended the relaxation method to implement a progres-
sive sampling scheme in LabVIEWwith near real-time recon-
struction and image display. The image is reconstructed and
displayed after each Hadamard acquisition; the acquisitions
may continue until satisfactory image quality is obtained.
Most test cases resulted in good-quality images with about
10 percent of the acquisitions, thus offering a factor-of-ten
increase in imaging speed by adapting the CS approach.
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