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In this paper, we briefly describe a single detector passive millimeter-wave

imaging system, which has been previously presented. The system uses a

cyclic sensing matrix to acquire incoherent measurements of the observed

scene and then reconstructs the image using a Bayesian approach. The cyclic

nature of the sensing matrix allows for the design of a single unified and

compact mask which provides all the required random masks in a convenient

way, such that no mechanical mask exchange is needed. Based on this setup,

we primarily propose the optimal adaptive selection of sampling submasks

out of the full cyclic mask to obtain improved reconstruction results. The

reconstructed images show the feasibility of the imaging system as well as

its improved performance through the proposed sampling scheme. c© 2012

Optical Society of America

OCIS codes: 110.0110, 110.1085, 100.3010, 100.3190, 110.1758, 280.4991.

1. Introduction

The millimeter-wave (MMW) regime lies in the microwave spectrum in the frequency band

between 30 and 300 GHz. All natural objects, whose temperature is above absolute zero, emit

passive millimeter-wave radiation. Passive millimeter-wave imaging (PMMWI) offers signif-

icant advantages over optical visible light and infrared imaging. In poor weather conditions

such as fog, snow, rain, clouds, smoke and dust PMMW radiation is attenuated multiple

orders of magnitude less than visual or infrared radiation [1]. Furthermore, PMMWI can
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function both during day and night. The amount of radiation emitted in the millimeter-

wave regime is 108 times smaller than the amount emitted in the infrared one. However,

current millimeter-wave receivers have at least 105 times better noise performance while the

temperature contrast recovers the remaining 103. This makes MMW imaging comparable

in performance with current infrared systems [2]. The ability to capture radiation in low-

visibility conditions has led to numerous applications of MMW technology over the course

of years [1]. These applications are relevant to homeland security, aeronautics, diagnostics,

defense and environment science. Recently, active and passive MMW scanners have been

successfully used in airports to detect a broad range of concealed threats [3].

Unfortunately, current PMMWI systems suffer from several limitations in terms of the

tradeoff between signal-to-noise ratio (SNR) and acquisition time. Two main types of imaging

systems are commonly used. Single radiometer imaging systems use raster scanning (moving

the radiometer or a lens in front of the radiometer), while real-time imaging applications

utilize focal-plane radiometer arrays to acquire the whole image. The former systems exhibit

low acquisition speeds while the latter tend to have high complexity and operational cost [4].

Often, costs are mitigated in PMMWI systems by employing only a single radiometer. To

retain this cost benefit while minimizing acquisition time, one can incorporate compressive

sensing (CS) techniques. CS has become a fast growing field in recent years due to its

interesting theoretical nature and its potential aid in numerous practical applications [5, 6].

CS uses a small number of random incoherent linear projections of a signal (e.g., an image)

and tries to obtain the original signal through a reconstruction algorithm. It is basically an

efficient sampling scheme, which overpasses the Shannon sampling theorem limit, exploiting

the sparsity inherent in many signals (e.g., natural images, PMMW images). Thus, it enables

the reduction of required samples, minimizing the long-acquisition time of a full raster scan

of the scene through a single radiometer while still providing comparable imaging quality.

The first prototype of a CS imaging system for visible light applications was presented

in [4], while different setups, like the one presented in [7], have also been proposed. Recently,

a more compact form of a single-pixel camera, based on the same principles and tailored for

commercial use, was described in [8]. For an overview of optical architectures for compressive

imaging see [9]. In the MMW spectrum, CS has been applied successfully for a few different

imaging applications [10–13], namely holography, PMMW imaging with extended depth of

field and sub-millimeter wave imaging.

In this paper, we describe a single radiometer PMMWI system based on Bayesian CS and

we propose an efficient and adaptive sampling scheme for improved reconstruction quality.

The main advantage of our system, compared to existing ones, [12, 13], is its simple design

which is based on conventional imaging principles.
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2. Compressive Sensing Passive Millimeter Wave Imaging System

The proposed PMMW imager, which has been previously presented in [14, 15], is depicted

in Fig. 1. It shows a single radiometer PMMW setup for CS imaging. To collect incoherent

measurements an extended binary mask is raster scanned in front of the scene using a 2D

controller and the illuminated radiation through a part of it (submask) is collected by a 2.54

cm diameter dielectric lens and fed to a 146 − 154 GHz Dicke-switched radiometer [14, 15].

The mask is used to multiply the radiation at different locations with 0 or 1 and the collection

lens works effectively as an integrator. Combined, these two elements implement an inner

product of the incident radiation with a submask configuration. The usage of masks to obtain

incoherent CS measurements has also been proposed in [16] for a terahertz (THz) imaging

system, which uses a total of 600 different random masks. Moreover, a time-efficient and

cost effective mask design for this system, based on Toeplitz matrices, has been provided

in [17]. Compared to these methods, our proposed mask, offers a much more compact design,

suitable for minimizing the volume and weight of the CS PMMW imager.

Mathematically, we can express a single radiometer measurement yi as

yi = Φix+ ni, (1)

where the row vector Φi of length N represents an ordered submask configuration. Vector x

(N × 1) represents the lexicographically ordered unknown image, and ni is the acquisition

noise. The image x and each submask configuration are assumed to contain N = p×q pixels.

The acquisition of all possible N measurements with different submask configurations can

then be expressed as

y = Φx+ n, (2)

where y is the observation vector of size N×1 and Φ is the measurement matrix constructed

by concatenating all possible N Φi’s resulting to a size of N ×N .

The compressed acquisition equation of M measurements (M � N) is equivalently

yM = ΦMx+ nM . (3)

3. Mask Construction

In the aforementioned PMMWI system the measurement matrix Φ corresponds to the mask

reported in the schematic of Fig. 1. This mask constitutes a cyclic S-matrix [18], which is

closely related to a Hadamard matrix. The definition of an S-matrix follows. Suppose Hn is

a normalized Hadamard matrix of order n (meaning that its first row and column contain

all 1’s). Then let S or Sn−1 be the (n − 1) × (n − 1) matrix of 0’s and 1’s obtained by

omitting the first row and column of Hn and then changing the 1’s to 0’s and the −1’s to

1’s. The rows of an S-matrix are pseudorandom sequences, or codewords in a simplex code
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(hence the name). For optical applications it is most convenient if the S-matrix is a cyclic or

left circulant matrix, i.e. has the property that each row is obtained by shifting the previous

row by one to the left. This considerably reduces the cost of the optical apparatus, since N

individual masks, of N slits each, can be replaced by a single mask in a compact form as we

will explain.

S-matrices share many common properties with uniformly redundant arrays (URAs) [19,

20] and they actually constitute a subset of URAs. URAs have been studied extensively

in the past due to their high throughput and low noise effects in coded aperture imaging,

and many different compact forms (linear, rectangular, hexagonal) have been proposed. The

interested reader is referred to [21] for an extensive overview.

Fig. 2 shows the relationship between the full cyclic S-matrix Φ as well as its correspon-

dence to the real mask and its submasks being used for each acquisition. The cyclic nature

of the matrix allows for the use of a single extended 2D mask of size (2p − 1) × (2q − 1)

to expose a p× q submask for each acquisition by raster scanning the large mask one pixel

at a time. Hence, the actual full size mask of size (2p− 1)× (2q − 1) allows for all possible

N acquisitions when different p× q regions of the mask are chosen. Clearly, for compressive

sensing, we are interested in choosing only M out of all possible N submasks, which cor-

respond to M lines of the S-cyclic matrix Φ or M different p × q regions of the real mask

(example regions are highlighted on the real mask at the bottom-right of Fig. 2).

We first construct a cyclic S-matrix of size N ×N using the twin prime construction [18].

This construction produces cyclic S-matrices of order N whenever N = p(p + 2) and both

p and q = p + 2 are prime numbers. This gives S-matrices of orders 15, 35, 143, 323, 899,

1763, 3599, . . . . Following, we rearrange the elements of the first row of the S-matrix into a

p× q configuration. The large acquisition mask (real mask) is then obtained by periodically

repeating the p× q matrix and retaining a matrix of size (2p− 1) × (2q − 1), as illustrated

in Fig. 2. We use N = 1763 with p = 41 and q = 43 and a pixel size of 1.24 mm to produce a

10.04 cm × 10.53 cm extended mask with (2p−1) × (2q−1) = 81×85 pixels. The mask was

fabricated using chrome coating on a millimeter-wave transparent quartz plate at Argonne

National Laboratory (ANL) [14,15].

The one to one correspondence between the rows of the S-cyclic matrix and the p × q

subregions of the real mask might not be obvious at first glance. Therefore, we provide an

example for an S-cyclic matrix of order N = 35, which can be represented in a p× q = 5× 7

configuration, in Fig. 3. It is apparent that sliding the selected submask over the extended

(2p− 1) × (2q− 1) = 9× 13 mask is equivalent to cyclic shifts of the first mask (highlighted

with a black rectangle) which corresponds to the first row of the S-cyclic matrix, as presented

in Fig. 2. Hence, moving the full 2D mask in front of the scene, one pixel horizontally or

vertically at a time, allows for the selection of N = 35 different submasks.
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4. Image Reconstruction and Proposed Sampling Scheme

Using CS, we acquire a much smaller number of measurements than the number of pixels in

the image, i.e., M � N , and can still reconstruct the observed scene through a Bayesian CS

reconstruction method. The Bayesian method utilized here has been previously investigated

[14,22] and its details will be omitted.

The algorithm is based on the fact that PMMW images contain very little texture, and the

edge structure is much simpler than in natural images allowing them to have highly sparse

representations [14]. Using this observation, it can be assumed that high-pass filtering of the

image x produces an image with most pixels zero or negligibly small such that the high-pass

filtered image is sparse in the spatial domain. This is modeled by placing a sparsity-inducing

Gaussian prior on each pixel in the high-pass filtered image. Mathematically, this is expressed

as:

p(x|Ak) ∝
∣
∣
∣
∣
∣

L∑

k=1

DT
kAkDk

∣
∣
∣
∣
∣

1
2

exp

(

−1

2

L∑

k=1

xTDT
kAkDkx

)

, (4)

where Dk, k = 1, 2, ..., L are N ×N high-pass filters, and Ak are diagonal precision matrices

corresponding to each filter output Dkx with Ak = diag(αki), i = 1, ..., N .

Adopting a hierarchical Bayesian framework and using the white Gaussian noise assump-

tion for the observed image, the posterior distribution of the estimated image can be found

as a multivariate Gaussian distribution N(x|μx,Σx) whose parameters are calculated using

an iterative procedure [14, 23].

The aforementioned algorithm has proven to provide superior performance compared to

other state-of-the-art total-variation (TV) minimization algorithms when random Gaussian

projection matrices or randomly chosen projection matrices out of the proposed S-cyclic

matrix are used [14]. Moreover, the algorithm has proven to be robust to noise, whose

variance is estimated. The goal of this paper is to investigate how this performance can

be further improved by adaptively selecting projection matrices from the S-cyclic matrix,

according to some criterion.

After experimentation with the cyclic matrix we observed that reconstruction performance

can be significantly improved, for low percentages of measurements, when equally-spaced

projections are used. Here, the equally-spaced term refers to the selection of 41× 43 masks

or rows of the S-matrix. This behavior can be intuitively explained as follows. Each row of

the cyclic matrix represents a circular shift of the previous row. Thus, an equally spaced

selection of masks corresponds to equally spaced samples in the image, with spacing equal to

the mask selection step. One can visualize this by following the position of a 1 in a row of Φ;

in the next acquisition the location of this 1 has moved vertically in the unstacked image x by

an amount equal to the spacing of the utilized rows in Φ. Such a sampling scheme reassures

that pixel information is collected densely over the whole image rather than from only some
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parts of the image when random projections are used. Furthermore, since PMMW images

are assumed to be smooth, neighboring pixels contain similar image intensity information.

Hence, the most informative way of sampling would be pixels that are sufficiently separated

but at the same time uniformly distributed over the whole image so that most information

can be collected when a small percentage of measurements is used. A similar observation has

been reported in [24,25] where the authors employ sampling patterns that satisfy probability

distributions, such as Poisson disk sampling, jittered sampling and farthest point sampling.

Such sampling patterns can control gap lengths between sampling points to avoid large local

loss of information and result in improved reconstruction quality.

The effect of equally spaced sampling compared to random sampling is presented in Fig.

4. The figure shows how many times each image pixel is sampled when 10 % � 177 measure-

ments are acquired. One can observe that the equally spaced sampling provides higher density

of samples over the whole image, while pixels with low number of samples are adjacent to

pixels with high number of samples, minimizing the loss of information around their region.

Of course, only one instance of the random sampling is presented, since it depends on the

particular random selection of the rows of Φ.

A drawback of this method is that equally spaced sampling is valid only for specific per-

centages, depending on the size of the image. For example, the 41×43 order of our S-matrix

does not allow for exact equally spaced selection of matrices when 30% of measurements are

required, since, in this case, the optimal step of row selection would be 3.33 rows. On the

other hand, for 10% of measurements out of the 41× 43 = 1763 pixels of the image (or num-

ber of different submasks) only 177 projection matrices (submasks) should be used to acquire

the required CS measurements. Based on the equally spaced idea, these projection matrices

can be selected starting from the first projection matrix (first row of the 1763×1763 S-cyclic

matrix) and then moving by 1763/176 � 10 rows at a time until all 1 + 176 = 177 measure-

ments have been obtained. Hence, a natural question arises: “Is there a way to optimally

select projection matrices for all possible percentages of measurements?”.

Knowing by experimentation that equally spaced sampling gives improved reconstruction,

we can start from the exact smaller percentage of measurements that gives an equally spaced

solution and then choose the remaining projections optimally. In other words, we want to

augment the acquisition matrix, formed by selecting equally spaced rows of Φ, by adding K

new rows, where each row is represented by rk. We can choose these projections by selecting

the rows that minimize the differential entropy [26] or maximize rTkΣxrk, where Σx denotes

the covariance matrix resulting from the Bayesian reconstruction procedure without the use

of the K new rows. Since rTkΣxrk = V ar(yk), this is equivalent to maximizing the variance

of the expected measurement yk. Put differently, the next set of projections rk should be

selected to constitute the set of measurements yk for which the data is most uncertain and,
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hence, access to the associated measurements would be most informative [26]. Therefore,

starting from the closest available equally spaced case, we move to the required percentage

by choosing all K most informative measurements in one step. For example, for the collection

of 11% � 194 measurements, we start from 177 equally spaced projection matrices and we

add K = 17 new projection matrices based on the described maximum variance rule. The

same procedure can be performed sequentially (choosing one new projection at a time)

but this method was tested and resulted in slow speeds with almost no improvement in

reconstruction quality compared to the one step selection of all K new projection matrices.

5. Results and Discussion

Experiments have been carried out to demonstrate the effectiveness of our system using

the proposed sampling scheme. We use three PMMW images. The first two were acquired

without the use of the mask and the integration lens (instead, the first lens is raster scanned

in front of the scene to collect a full set of measurements) and the compressed acquisitions

are simulated. For the third image, a full set of 41× 43 = 1763 CS observations is obtained

with our setup in Fig. 1 and reconstruction is carried out using a subset of them. As a

quality metric, we employ the peak signal-to-noise ratio (PSNR) which is directly related to

the mean squared error (MSE) as:

PSNR = 10 log10

(

maxx
2

MSE

)

, (5)

MSE =
1

N

N∑

i=0

(x(i)− μx(i))
2, (6)

where maxx is the maximum possible pixel value of the image (e.g., 255) and μx is the

reconstructed image in vector form.

The first two images, for which CS measurements were simulated, depict the middle part of

a pair of scissors and a car. The resulting PSNR using random projections and the proposed

method is compared in Fig. 5 and Fig. 6, for each image respectively, and for percentages 1%

to 70% with step 1%. The reconstructed images through our method, corresponding to 10%,

15%, 20%, 25% and 30% of total observations together with the original PMMW images are

also presented in these figures. Additionally, we provide the reconstructed images through

random sampling for one of the conducted experiments. This presentation gives the reader

an idea of the relation between PSNR and visual quality improvement, which is particularly

apparent for percentages 10% - 20%.

The equivalent results for the third image, for which CS measurements were obtained

through the proposed CS imaging system, are shown in Fig. 7. The image depicts a metallic

plate with an open circular hole, having an opaque stripe in the middle. The real PMMW
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image is unknown in this case. Therefore, we provide a simulation of the real scene, [15], and

PSNR is compared to the reconstructed image resulting through a full acquisition (100 % of

measurements).

All the results, simulated (Fig. 5, Fig. 6) and experimental (Fig. 7), agree on the improved

performance of the proposed method compared to the usage of random projections, out of

the S-cyclic matrix, especially for low percentages of measurements (≤ 50%). For higher

percentages it is expected that random projections have almost the same performance as the

proposed method since a random selection of masks converges to an equally spaced selection

of step 2 plus additional random projections in between these selected rows. However, this

behavior is not observed in the experimental results (Fig. 7), where improved performance is

maintained over the whole range of CS ratios. Certainly, reconstruction performance depends

on the image itself. Additional images have been tested, through simulations, and converge to

the conclusion that the proposed sampling scheme provides improved reconstruction quality

to a lower or higher extent.

Finally we want to emphasize that the contribution of our proposed sampling scheme is

twofold. First, the observation that equally spaced selection of submasks provides superior

reconstruction quality is algorithm invariant. That is, any standard CS reconstruction al-

gorithm is expected to exhibit improved performance under the same set of projections.

Second, the adaptive selection of additional submasks to reach a required percentage of

measurements, which cannot be accommodated by the equally spaced selection scheme, is

only covariance dependent. The only requirement is the calculation of the covariance matrix,

which is a standard procedure in any Bayesian CS reconstruction algorithm. For example,

the Bayesian reconstruction method presented in [26] could be used instead.

6. Conclusions

To conclude, in this paper we described a single radiometer CS passive millimeter wave

imaging system which avoids full raster scanning of the radiometer (or the lens) using a

compact mask construction to collect incoherent CS measurements. We mainly proposed a

new CS sampling scheme to increase reconstruction quality. The reconstruction algorithm

employs a Bayesian CS formulation to estimate the unknown image. Experiments show that

the combination of the proposed system with the improved sampling scheme significantly

reduces the number of required measurements for acceptable reconstruction.
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List of Figure Captions

Fig. 1. Schematic of the CS PMMW imager, previously presented in [14,15].

Fig. 2. Mask construction - Correspondence between the S-cyclic matrix and the real

mask.

Fig. 3. Example of an S-cyclic matrix of order N = 35 rearranged in a p × q = 5 × 7

configuration and giving rise to a (2p − 1) × (2q − 1) = 9 × 13 full mask. The gray and

white squares correspond to opaque (0’s) and transparent (1’s) elements, respectively.

Fig. 4. Comparison of (a) equally spaced sampling to (b) random sampling for 10%

� 177 measurements out of N = 1763.

Fig. 5. Simulated CS reconstruction of a PMMW image depicting the middle part of

a pair of scissors. PSNR comparison using random projections of the S-cyclic matrix versus

the proposed method and example reconstructions for 10%, 15%, 20%, 25% and 30% of CS

measurements.

Fig. 6. Simulated CS reconstruction of a PMMW image depicting a car. PSNR com-

parison using random projections of the S-cyclic matrix versus the proposed method and

example reconstructions for 10%, 15%, 20%, 25% and 30% of CS measurements.

Fig. 7. Experimental CS reconstruction of a PMMW image depicting a metallic plate

with an open circular hole, having an opaque stripe in the middle. PSNR comparison

using random projections of the S-cyclic matrix versus the proposed method and example

reconstructions for 10%, 15%, 20%, 25% and 30% of CS measurements, through the

proposed method. Note, that the real PMMW image is unknown in this case. Therefore, we

provide a simulation of the real scene and PSNR is compared to the reconstructed image

resulting through a full acquisition (100% of measurements).
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Fig. 3. Example of an S-cyclic matrix of order N = 35 rearranged in a p× q =

5× 7 configuration and giving rise to a (2p− 1) × (2q− 1) = 9× 13 full mask.

The gray and white squares correspond to opaque (0’s) and transparent (1’s)

elements, respectively. Spinoulas-fig3.eps.
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Fig. 4. (Two Columns) Comparison of (a) equally spaced sampling to (b)

random sampling for 10 % � 177 measurements out of N = 1763. Spinoulas-

fig4.eps.
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Fig. 5. (Two Columns) Simulated CS reconstruction of a PMMW image de-

picting the middle part of a pair of scissors. PSNR comparison using random

projections of the S-cyclic matrix versus the proposed method and exam-

ple reconstructions for 10%, 15%, 20%, 25% and 30% of CS measurements.

Spinoulas-fig5.eps.
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Fig. 6. (Two Columns) Simulated CS reconstruction of a PMMW image depict-

ing a car. PSNR comparison using random projections of the S-cyclic matrix

versus the proposed method and example reconstructions for 10%, 15%, 20%,

25% and 30% of CS measurements. Spinoulas-fig6.eps.
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Fig. 7. (Two Columns) Experimental CS reconstruction of a PMMW image

depicting a metallic plate with an open circular hole, having an opaque stripe

in the middle. PSNR comparison using random projections of the S-cyclic

matrix versus the proposed method and example reconstructions for 10%, 15%,

20%, 25% and 30% of CS measurements, through the proposed method. Note,

that the real PMMW image is unknown in this case. Therefore, we provide

a simulation of the real scene and PSNR is compared to the reconstructed

image resulting through a full acquisition (100% of measurements). Spinoulas-

fig7.eps.
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