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Minimally invasive surgical procedures offer advantages of smaller incisions, decreased hospital length of stay, and rapid
postoperative recovery to the patient. Surgical robots improve access and visualization intraoperatively and have expanded the
indications for minimally invasive procedures. A limitation of the DaVinci surgical robot is a lack of sensory feedback to the
operative surgeon. Experienced robotic surgeons use visual interpretation of tissue and suture deformation as a surrogate for tactile
feedback. A difficulty encountered during robotic surgery is maintaining adequate suture tension while tying knots or following
a running anastomotic suture. Displaying suture strain in real time has potential to decrease the learning curve and improve the
performance and safety of robotic surgical procedures. Conventional strain measurement methods involve installation of complex
sensors on the robotic instruments. This paper presents a noninvasive video processing-based method to determine strain in
surgical sutures. The method accurately calculates strain in suture by processing video from the existing surgical camera, making
implementation uncomplicated. The video analysis method was developed and validated using video of suture strain standards
on a servohydraulic testing system. The video-based suture strain algorithm is shown capable of measuring suture strains of 0.2%

with subpixel resolution and proven reliability under various conditions.

1. Introduction

The use of robotics in surgery has undergone rapid growth
due to the advantages it offers of small incisions, fast
recovery, and low cost [1]. As a case in point, greater than
50% of radical prostatectomies for prostate cancer in the
US are now being performed with robotic assistance [2]. In
robotic surgery, the robot is operated in teleoperation mode,
where the surgeon controls the robot manipulator arms
with hand controllers. While visual feedback is the main
surrogate of sensory feedback, direct force feedback to the
surgeon’s hand has been deemed necessary for more difficult
surgical procedures [3].

The recent success of the DaVinci surgical robot, which
has no force feedback, demonstrates that the incorporation
of high resolution binocular vision allows an experienced
surgeon to use visual cues as a surrogate for sensory feedback
[4]. Surgeons can effectively deduce force information by
visually observing the deflection of the membrane being
manipulated. Robotic surgery is currently limited to oper-
ations in which the surgeon can visually compensate for
sensory feedback. The development of a sensory feedback

system for robotic surgery procedures will decrease the
learning curve and allow more difficult operative procedures
to be performed with minimal incision robotic technique.

One of the challenges encountered during robotic
surgery is maintaining suture tension. Excessive tension dur-
ing knot tying may cause breakage of suture or tissue, while
insufficient tension may result in knot failure. Additionally,
maintaining adequate suture tension during a running anas-
tomotic suture is difficult even for a highly skilled surgeon
[5]. It has been demonstrated that haptic feedback via visual
and auditory cues does decrease the time to perform suture
tying with robotic systems [6]. Several investigators (e.g.,
Akinbiyi et al., Shimachi et al., Reiley et al.) install complex
sensors in order to directly measure forces on sutures during
robot-assisted surgical tasks [7-9]. However, these sensors
are generally difficult to apply to robotic surgical systems,
adding considerable costs, and the risk of detachment. To this
end, we present a novel, non-invasive approach to calculate
suture strains directly from video images routinely available
during robotic surgical procedures, thereby avoiding the
installation of complex sensors.



FIGURE 1: Marked suture held by the two grippers of a surgery robot.

Measuring and displaying suture strain in real time has
potential to improve the performance and safety of robotic
surgical operations. While conventional strain measurement
methods involve complex sensor installation, this paper pre-
sents a non-invasive method based on video image process-
ing. In the following sections, the method and algorithm are
described, and the performance of the method is evaluated
in terms of accuracy and adaptability for various conditions.

2. Methods

2.1. Video Processing Algorithm. To measure suture strain, we
employ a suture that is premarked with a set of dark markers
at regular intervals. Shown in Figure 1 is a marked suture
held between the two grippers of a surgical robot. The suture
strain is measured by video detection of the displacement
of these markers upon tension. While the concept appears
simple, the challenge lies in accurately determining suture
strain in real time using frame-by-frame video processing
to automatically identify and track markers on a suture that
moves in different planes during tying.

The image processing algorithm is composed of the steps
shown in Figure 2: image enhancement (color channel selec-
tion), edge detection, line detection (Hough transform), line
profiling and marker detection, marker tracking (quadratic
regression), and strain computation. Detailed description of
each step is presented in this section.

2.1.1. Image Enhancement (Color Channel Selection). In
order to allow accurate and reliable strain measurement by
visual image processing, it is first important to have video
image frames with good marker contrast. The algorithm
can process video frames acquired from a color or B/W
camera. For a color (RGB) video image, the algorithm
automatically calculates and determines the color channel
that gives the best contrast between background and suture.
The algorithm then adapts the channel in such a way that
renders the darkest background against a light suture image.
For example, in the case of dark suture as illustrated in
Figure 3, the grayscale image of each channel is first inverted
so the suture image appears light. Then the red channel
is selected for background, since blue appears light in the
inverted background.

2.1.2. Edge Detection. After the color channel is selected
for optimum contrast to visualize the suture, Sobel edge
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FIGURE 2: Flow chart of image processing algorithm.

operators are applied to the grayscale image resulting in a
binary image with enhanced suture edges for processing with
the Hough transform (see Section 2.1.3).

2.1.3. Line Detection (Hough Transform). The suture line
image is identified by a line detection algorithm. Two widely
known algorithms—Radon transform [11] and Hough
transform [12]—may be adopted for this purpose. The
Radon transform can be applied directly to a grayscale image,
and thus gives flexibility. However, since it is a computation-
ally intensive process, it is applicable to offline processing
or when the suture remains relatively still. In the latter case,
line detection can be performed on every Nth frame. Every
frame must be processed when the suture moves quickly.
In such cases, a computationally efficient Hough transform
is used, which operates only on binary images. To obtain a
binary image, a Sobel edge detection algorithm is applied to
a grayscale image which produces a binary (B/W) image with
enhanced edges in the video frame, including the suture line.

Figures 4(a)-4(c) illustrate the various steps of the
automated suture line detection process. Figure 4(a) shows
the edge images obtained as a result of a Sobel edge detection
algorithm. A Hough transform is then applied to the edge
image to identify the suture line, which is represented by
the maximum intensity point on the Hough transform. The
Hough transform maps the image points (i, j) into points in
a parametric space (p, 8) according to

p=icosf+ jsind, (1)

where p and 0 represent the offset distance and inclination
of the line from the image space origin [13, 14]. Figure 4(b)
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F1GURE 3: Color channel selection of dark suture (the red channel gives best contrast for suture image in the inverted image frame).

shows the results of Hough transform, where the straight
suture line in the image frame is mapped to a point indicated
by a circle. Figure4(c) shows the identified suture line
displayed in the original image.

2.1.4. Line Profiling and Marker Detection. The marker
location is detected by intensity profiling along the suture
line and pattern matching with a known “template” intensity
profile representing the mark. However, because the previ-
ously detected edge line does not coincide with the suture
center line, such profiling will not result in correct intensity
profile. Therefore, at each incremental image point along the
line, we take =N lines on either side of the detected line
and average them to include the center of the suture. This
process of multiline profiling is illustrated in Figure 4(d),
where intensity is averaged over the width of the suture
line (7 pixels). This scheme also helps in cases where the
“edge” line is not parallel to the suture line or the suture line
becomes slack.

Along the averaged intensity profile, the location of
the marker is detected by pattern matching with a known
marker template. The software gives the option of manually
picking the template marker points, shown as red circles in

Figure 4(c), or it can be automatically picked. In this example
the markers were selected manually. Once the marker point is
picked, its intensity profile is used as a template throughout
the tracking process. We have observed that strain values are
more accurate when markers are separated by the greatest
distance. Pattern matching is accomplished by computing
cross-correlation of the known template and the intensity
profile of the moving window, as illustrated in Figure 4(e).
The correlation coefficient (p,4) between template (p) and
suture line intensity (q) is defined as

CP‘I

Pra = 0,0, (2)

where C,, is the covariance and GI%, aj are variances of
random variables p and g, respectively. As a result, the
marker location along the suture line profile is estimated with
a resolution of one pixel.

2.1.5. Marker Tracking (Quadratic Regression). Once the
markers are detected by pattern matching as in the previous
section, the program selects a set of markers and tracks them
with high precision. The markers to be tracked are selected
either manually or automatically. Once the markers are
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FIGURE 4: Suture line and marker detection process. (a) A binary image resulting from Sobel edge detection operators. (b) Hough transform
on binary image for line detection. (¢) Detected suture is displayed on the video image and markers are selected (red circles). (d) Line profile
showing chosen markers (black arrows). (e) The pattern for the chosen marker (red line) is matched in the line profile (green line).

chosen, the algorithm tracks them from frame to frame, and
the center of the marker location is estimated by quadratic
regression:

y =ax*+bx+c, (3)

where y is the pixel intensity, x is the x-coordinate of the
marker center along the line, and the constants a, b, and ¢ are

coefficients of the fitted quadratic curve and are determined
by quadratic regression. Figure 5 illustrates the curve fit to
five discrete intensity points. The marker location is deter-
mined as the x-value of the minimum point of the curve.
Determining the marker positions from a quadratic
curve fit based on multiple individual pixels allows detection
of the marker center position with sub-pixel resolution.
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FIGURE 5: Marker tracking: quadratic curve fitting.
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FIGURE 6: Strain methods.

The measurement resolution is expected to be dependent
on the marker width and the contrast of marker edge: the
greater the contrast, the larger the difference in gray level
values that we have between mark and no mark, allowing
positions to be measured in finer increments. The previous
step of marker detection based on cross-correlation gives a
single image pixel spatial resolution. The purpose of marker
tracking is to obtain higher resolution. By adopting quadratic
regression (curve fitting) on a smaller window, it will give
infinite resolution of marker location.

2.1.6. Strain Computation. Once the positions of the markers
are known, the suture strain is calculated by

AL
$=7 (4)
where L is the reference suture length between markers
before stretch and AL is the change in length between
marker(s). Only the visible component of suture strain may
be calculated. When the suture is positioned perpendicular
to the video camera, the total strain and visible strain are
equivalent. When the suture position is oblique to the video
camera, only the component of strain perpendicular to the
video camera is detectable. For the purpose of this study the
suture is positioned perpendicular to the video camera.

Strain calculations were implemented in two ways: one-
point tracking and two-point tracking. The former approach,
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FIGURE 7: Snapshot of the video processing for strain measurement
display.

as illustrated in Figure 6(a), assumes a fixed location of
one end (absolute L), and the strain is solely measured by
change in marker location, AL. This approach is adopted to
determine the highest attainable measurement precision. In
two point tracking, as illustrated in Figure 6(b), both end
markers are assumed to move during stretch (relative to L),
and the strain is computed from the relative distance between
them. Implementation of this method requires development
of an algorithm that can track moving suture. We expect the
two-point tracking method to result in larger measurement
errors compared to one-point tracking, due to additive errors
in tracking two markers.

Incorporating the various parts of the video processing
method, the strain measurement software is constructed.
Figure 7 shows a snapshot of the video processing software
which displays the video stream in the top window and
the strain measurements in the bottom most plot. Shown
in the middle window is the intensity profile, which is
helpful for monitoring the marker detection process. When
the suture is not under strain, this algorithm will yield
inconsistent results. We implemented multiple line profiling
to allow slackened suture to be tracked, although strain
measurements are not possible under these conditions.
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(b) Instron strain testing setup

FIGURE 8: Loading test experimental setup.
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FIGURE 9: Video processing estimates of strain compared to the actual values as recorded by the materials testing system. (a) Trapezoidal
reference waveform. (b) Strain measurement results.
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FIGURE 10: Failure strain of most common surgical sutures: Our measurement system detects a minimum of 0.2% strain in suture which is
well below the strain to failure (13%) (This figure was reprinted from [10], with permission from Elsevier.).

2.2. Strain Measurement Test. To evaluate the performance of
the video algorithm, a series of calibrated suture loading tests
were designed and performed.

2.2.1. Cyclic Loading of Stationary Suture. To evaluate the
highest attainable strain resolution, a series of stationary
loading tests were performed using an Instron 8500+ servo-
hydraulic testing system as shown in Figure 8. 2.0 Dexon II
suture material was used in the test. As shown in Figure 8(a),
the suture was marked with a sharp mechanical pencil at
lcm intervals and tied between a 500-Newton load cell
and the system actuator. The suture was preloaded to 2.5
newtons, and the working length of the suture was measured.
The actuator was then programmed for displacements to
provide strains of 0.1%, 0.2%, 0.3%, 0.4%, and 0.45%.

Ten trapezoidal shaped cycles with a ramp strain rate
of 0.2% strain/sec and a two-second pause at peak and
trough were applied to the suture in tension (Figure 9(a)).
A linear position transducer (Instron LVDT no. 2601-062, +
0.013 mm) was used to control this portion of the testing.
A digital video camera (Sony DCR-SR45, resolution: 72 X
480 pixels) was used to record the video images. The suture
motion was limited to a plane perpendicular to the camera
axis at a fixed distance.

Video processing estimates of strain compared to the
actual values as recorded by the materials testing system. The
image processing algorithm was run offline on a recorded
video stream, and the total strain amplitude was calculated
based on one-point tracking methods. The calculated strain
amplitudes were then compared to the actual strain ampli-
tude recorded by the Instron testing system. The video pro-
cessing algorithm was unable to detect strains in the suture
below 0.2%. The amplitude and shape of the waveforms
resulting from the video strain detection algorithm matched
the displacements produced by the material testing system as

strain increased beyond 0.2%. Figure 9(b) shows improved
fit of the displacement waveforms calculated with the video
system to the actual displacements applied to the suture by
the testing system. The accuracy of the video algorithm is
estimated as the calculated strain compared to the magnitude
of strain applied by the testing system. The majority of
commonly used surgical sutures have been reported to fail at
above 20% strain (i.e., >0.2 strain as shown in Figure 10). In
comparison, the algorithm sensitivity was capable of detect-
ing suture strain with high measurement resolution at strain
values well below the suture failure strain of 20% (0.2 strain).

2.2.2. Effects of Sharper Marker. We expected the shape
and contrast of the markers to impact the performance of
this visually based strain detection algorithm. Specifically,
the marker tracking algorithm applies curve fitting to the
marker edge based on intensity variation. Accordingly, it
was expected that markers with sharper (higher contrast)
edges would allow for superior measurement resolution. To
investigate such an effect, specimens with different contrast
markers were tested as in the previous section. The video
algorithm’s strain measurement of each marked suture was
compared to its corresponding measurement as recorded
on the Instron testing system. Figure 11 shows the strain
measurement result for a loading cycle of 0.2% strain. In the
plot, the strain measurement with sharper marker (top plot)
is placed in comparison with the previous measurement on a
less sharp marker (bottom plot). The sharp marker resulted
in more accurate measurement (standard deviation (std) =
0.04; root mean square (RMSE) = 0.04) compared to the
previous results (std = 0.06 and RMSE = 0.06).

2.2.3. Two-Point Marker Tracking. The previous stationary
loading tests calculated strain using a single marker and
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assumed that the other end of the suture was fixed; therefore,
the video images were processed with one-point marker
tracking. While its purpose was to determine the maximum
attainable measurement resolution, both end markers may
move significantly from frame to frame in clinical situations.
In this regard, we implemented an improved algorithm
that selects an appropriate set of markers, tracks them, and

computes strain under dynamic conditions. Tensile testing
loads were applied to marked sutures as described above,
with postprocessing performed using one- and two-point
tracking, allowing an assessment of the precision of marker
tracking methods. Figure 12 shows that the accuracy of strain
measurements for two-point tracking (RMSE = 0.11), was
lower than that for one-point tracking (RMSE = 0.06). The
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smallest detectable strains for one- and two-point tracking
were 0.2% and 0.5% strain, respectively.

3. Conclusion

We have introduced a video processing method that detects
suture strain during robotic surgery. This video-based
method employs a suite of image processing algorithms that
identify the suture line, locate and track the displacement
of markers on the suture, and convert marker displacements
into suture strain values. The method is capable of tracking
markers on a moving suture, which is necessary in surgical
procedures. The performance of this video method was
evaluated by a series of strain tests using a hydraulic testing
machine and 2.0 Dexon II suture. These tests showed a
minimum detectable strain of 0.2% for one-marker tracking
on stationary suture and 0.5% for the more clinically relevant
two-marker tracking on moving suture. These minimum
detectable strains are two orders of magnitude smaller than
the known strain to failure of most suture materials (20+%),
allowing a large margin of safety in the clinical setting.

Further improvement in the resolution of this technique
is expected with commercially applied high contrast marked
suture. A limitation of the current video processing algo-
rithm is the inability to accurately detect strain when the
suture lies at an oblique angle to the video camera. We
are currently developing a stereoscopic imaging algorithm
that calculates the angle between the suture and the video
camera. Given this information, the visible suture strain is
used to determine the total suture strain. The addition of
the stereoscopic imaging will make the clinical application
more robust. Real-time feedback of suture tension during
robotic-assisted procedures is expected to compensate for the
current lack of sensory feedback in robotic surgery, thereby
decreasing the learning curve and improving the safety of
robotic-assisted procedures.
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