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ABSTRACT
In this paper, we present a novel passive millimeter-wave (PMMW)
imaging system designed using compressive sensing principles. We
employ randomly encoded masks at the focal plane of the PMMW
imager to acquire incoherent measurements of the imaged scene. We
develop a Bayesian reconstruction algorithm to estimate the origi-
nal image from these measurements, where the sparsity inherent to
typical PMMW images is efficiently exploited. Comparisons with
other existing reconstruction methods show that the proposed recon-
struction algorithm provides higher quality image estimates. Finally,
we demonstrate with simulations using real PMMW images that the
imaging duration can be dramatically reduced by acquiring only a
few measurements compared to the size of the image.

Index Terms— Passive millimeter wave imaging, compressive
sensing, Bayesian methods, sparse reconstruction.

1. INTRODUCTION

Passive millimeter-wave imaging (PMMWI) offers significant
advantages over optical visible light and infrared imaging, as
millimeter-waves are less affected by adverse conditions such as,
clouds, fog, smoke, and dust. Moreover, PMMWI can be used
during both night and day. These advantages make PMMWI an
ideal imaging modality for search and rescue, law enforcement, and
military applications.

Unfortunately, current PMMWI systems suffer from several lim-
itations in terms of the tradeoff between signal-to-noise ratio (SNR)
and acquisition time. An introduction to PMMWI and related tech-
nological challenges is given in [1]. A typical PMMW imager con-
sists of an imaging lens or mirror which focuses the radiation of a
distant object onto the antenna of a radiometer. Two types of imag-
ing systems are commonly used: the single-pixel scanning imager
uses a movable antenna to mechanically scan the image pixels, while
the focal plane imager uses a 2D antenna array to acquire the whole
image in a single acquisition. The disadvantage of using an antenna
array is that the signal-to-noise ratio is poor as each antenna only re-
ceives a fraction of the radiation and the spatial resolution is limited
due to the minimum aperture size (in the order of λ). In addition,
a separate radiometer is required for each pixel, which causes such
systems to be prohibitively expensive and bulky. On the other hand,
the scanning imager receives the full radiation at each location, but
the acquisition time for all N pixels of an image can be very large.

In our work, we propose a novel PMMW imager which uses the
principle of compressive sensing (CS) [2] to reduce the image ac-
quisition time for a given SNR level. The principle of the imager
is similar to the single-pixel CS camera [3], but instead of a dig-
ital micromirror device (DMD), we use masks with reflective and
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Fig. 1. Schematic of the proposed PMMW imager.

transmissive elements. By performing subsequent acquisitions with
different masks, we obtain incoherent measurements of the unknown
PMMW image. In [4] a system for CS terahertz (THz) imaging is
proposed which uses a total of 600 different random masks. Han-
dling such a large number acquisition masks poses major difficulties
in practice. More recently, a CS THz imaging system using Toeplitz
matrix based masks has been presented [5]. This mask construction
has the advantage that a large number of masks can be represented
by a single acquisition mask. We follow a similar approach and use
a mask construction based on an S-matrix, which is closely related
to a Hadamard matrix. This construction allows us to represent a
total of N masks efficiently using a single mask, from which we use
a subsection for each measurement.

Nonlinear reconstruction of the unknown PMMW image from
incoherent measurements is possible since PMMW images are
typically sparse (or compressible) in some transform basis (e.g.,
wavelets) [6]. To reconstruct the PMMW images, we propose a
novel Bayesian reconstruction algorithm which exploits the high
sparsity inherent in PMMW images. We model this property using a
hierarchical Bayesian formulation with sparsity inducing Gaussian
priors on the high-pass filter outputs of each pixel. The algorithm
simultaneously estimates the unknown image and the algorithmic
parameters from the acquired incoherent measurements.

Finally, we demonstrate the effectiveness of the proposed system
using simulations with real PMMW images obtained using a single-
pixel scanning imager. Experimental results demonstrate that the
constructed mask and the proposed reconstruction algorithm provide
high quality results compared with existing methods.

The rest of this paper is organized as follows. The proposed
PMMW imager is described in Sec. 2. A description of the Bayesian
reconstruction algorithm is given in Sec. 3. Experimental results are
presented in Sec. 4, and concluding remarks are given in Sec. 5.
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2. COMPRESSIVE SENSING PMMW IMAGER

The proposed PMMW imager is depicted in Fig. 1. To collect inco-
herent measurements of an object, a two dimensional mask is placed
at the focal plane of the imager and a collection lens is used to focus
the radiation passing through the mask onto the antenna of a Dicke-
switched radiometer with a frequency range of 146-154GHz, corre-
sponding to wavelengths of 1.9mm to 2.1mm (see [7] for details).
The mask is used to multiply the radiation at different locations and
the collection lens works effectively as an integrator. Combined,
these two elements implement an inner product of the incident radi-
ation with the mask configuration.

Mathematically, we can express a single radiometer measure-
ment yi as

yi = Φix + ηi, (1)

where the row vector Φi of length N represents an ordered mask
configuration, vector x represents the ordered unknown image, and
ηi is the acquisition noise. The image x and each mask configuration
is assumed to contain N = p × q pixels. The acquisition of a total
of M measurements with different mask configurations can then be
expressed as

y = Φx + η, (2)

where y is the observation vector of lengthM and Φ is the measure-
ment matrix constructed by concatenating M Φi’s.

In a traditional setup, a total of N measurements are required
for perfect reconstruction of x from the observation y (in the ab-
sence of noise). However, this requires a long imaging process with
a large number of different mask configurations. Assuming a typical
mechanical switching process between different masks, this setup
is impractical for many imaging scenarios. To reduce the number
of acquisitions M � N , we employ the principles of compressive
sensing, which requires two key elements. First, the unknown image
x must have a sparse representation in some transform domain. It
is reasonable to assume that PMMW images meet this requirement
as they are structurally similar to natural images, for which sparse
representations exist.

Second, the measurement matrix Φ has to be random such that
the measurements y are incoherent. In practice, using general ran-
dom measurement matrices (such as those drawn from Gaussian or
uniform probability distributions) is generally not possible when us-
ing a mask based system, as negative matrix elements cannot be im-
plemented. Even for matrices where all elements are positive, a prac-
tical implementation requires masks which let a specified fraction of
the radiation pass at each location, which is difficult to achieve. In
the proposed system we utilize binary measurement matrices, which
are often used in practice [3, 4, 5], as they can be implemented us-
ing masks with transmissive and reflective elements, corresponding
to the 1s and 0s in the matrices, respectively. A second problem
encountered in practice is that even with a significant decrease in
the number of measurements, imaging an object requires M differ-
ent masks. This causes a major practical problem even for small
image sizes, as the number of masks M can be as high as 200 for
recovering an image of 1000 pixels. To alleviate this problem, we
use a larger acquisition mask of size (2p − 1) × (2q − 1), which
allows us to perform up to N acquisitions by using p × q sections
of the mask for each acquisition. In practice, changing the mask
is accomplished by simply translating the larger acquisition mask
horizontally and vertically, with the beam profile covering a p × q
section of the mask. In this work, we use a construction based on
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Fig. 2. Acquisition mask: (a) the mask construction by repeating a
p × q mask and (b) the actual mask manufactured with the red and
blue rectangles illustrating sections that are used to perform acquisi-
tions.

a cyclic S-matrix [8]. To construct the larger acquisition mask, we
first construct a cyclic S-matrix of size N ×N using the twin prime
construction [8] and re-arrange the elements of the first row of the
S-matrix into a p × q matrix. The larger acquisition mask is then
obtained by periodically repeating the p × q matrix and retaining a
matrix of size (2p−1)× (2q−1), as illustrated in Fig. 2(a) (for de-
tails see [8]). The important property of this construction is that each
p×q section of the large mask corresponds to exactly one row in the
N × N S-matrix. Therefore, all N possible acquisition masks can
be represented by a single (2p−1)× (2q−1) mask. A requirement
of the twin prime construction is that p and q = p+2 are both prime
numbers. In this paper, we use p = 41 q = 43, such that the image
size is 41× 43 and the total number of pixels is N = pq = 1763.

The large acquisition mask with size (2p − 1) × (2q − 1) =
81 × 85 is illustrated in Fig. 2(b). The mask is manufactured using
a photolithographic process and consists of a glass substrate with a
bronze coating, where the bronze is removed to create transmissive
elements. The individual mask elements have a size of 1.3×1.3mm.
Finally, to acquire the incoherent measurement vector y for a given
M , we randomly select M locations from the N possible mask lo-
cations and perform the acquisitions.

3. RECONSTRUCTION ALGORITHM

As mentioned above, the PMMW images have highly sparse rep-
resentations. An example PMMW image of a car is shown in Fig.
3(a), with the corresponding optical image shown in Fig. 3(b). It is
clear that the PMMW image contains very little texture, and the edge
structure is much simpler than in natural images. This is expected,
as PMMW imagers record radiation of the scene without any color
information.

Using this observation, we assume that high-pass filtering of
the image x produces an image with most pixels zero or negligibly
small, i.e., the high-pass filtered image is sparse in the spatial do-
main. We model this by placing a sparsity-inducing Gaussian prior
on each pixel in the high-pass filtered image. Mathematically, this is
expressed as

p(x|{Ak}) ∝|
LX

k=1

DT
k AkDk |−1/2 exp

 
−1

2

LX
k=1

xT DT
k AkDkx

!
,

(3)

where Dk, k = 1, 2, . . . L are N ×N high-pass filters, and Ak are
diagonal matrices with precision parameters for each filter output
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Dkx, with Ak = diag (αki) , i = 1, . . . , N .
In addition to the unknown image, our goal is to simultaneously

model and estimate all algorithmic parameters. To achieve this, we
adopt a hierarchical Bayesian framework. The observed image is
modeled using the white Gaussian noise assumption by the condi-
tional distribution

p(y|x, β) ∝ βN/2 exp

»
−β

2
‖ y −Φx ‖2

–
. (4)

where β is the inverse noise variance (precision). The hyperparam-
eters β and αki are assigned uniform distributions such that

p(β) = const, p(αki) = const, k = 1, . . . , L, i = 1, . . . N. (5)

Finally, using (3), (4), and (5), the joint distribution p(y,x, {Ak}, β)
is defined as

p(y,x, {Ak}, β) = p(y|x, β) p(x|{Ak}) p(β)

LY
k=1

NY
i=1

p(αki).

(6)

Inference is based on the posterior distribution p(x, {Ak}, β|y) =
p(y,x, {Ak}, β)/p(y). However, as in many applications, the pos-
terior distribution cannot be obtained in closed form. Therefore, we
resort to the evidence approach to approximate the posterior distri-
bution. The posterior is first decomposed as

p(x, {Ak}, β|y) = p(x|y, {Ak}, β)p({Ak}, β|y) . (7)

The first term in this decomposition is then used to find the poste-
rior distribution of the image as a multivariate Gaussian distribution
N (x|µx,Σx) with parameters

µx = Σx βΦT y , (8)

Σ−1
x =

"
βΦT Φ +

LX
k=1

DT
k AkDk

#
. (9)

The mean in (8) of this distribution is used as the estimate of the im-
age. The posterior distribution of the hyperparameters can be found
by approximating the second term in (7) by a delta function at its
mode. For space limitations, we omit the derivation details here and
provide the final estimation rules (see [9] for a similar derivation).
The updates for the parameters αki are given by

α−1
ki = (Dkµx)2i +

“
DT

k DkΣx

”
ii
. (10)

The noise precision β is estimated by

β =
N

‖ y −Φx ‖2 +trace (ΦT ΦΣx)
. (11)

The algorithm iterates between the unknown image estimation
using (8), and the estimation of the hyperparameters using (10) and
(11) until convergence. The computation of the image estimate in
(8) is done efficiently using the conjugate gradient method. How-
ever, the explicit construction of theN ×N covariance matrix Σx is
required in (10) and (11), which is computationally very demanding
due to its large size. Therefore, we approximate it as a diagonal ma-
trix where the elements are reciprocals of the diagonal elements of
Σ−1

x . Empirically, this approximation does not result in significant
reduction in performance.

(a) (b)

Fig. 3. (a) PMMW test image, and (b) visible light image of the
same scene.

The proposed algorithm imposes sparsity on the high-pass fil-
tered image by enforcing many of the hyperparameters αki to as-
sume large values. It can be seen from (8) and (9) that at the limit
when αki →∞, the corresponding filter output is estimated as zero.
Therefore, large values of αki result in small values in the estimated
filter outputs, hence resulting in sparse estimates. Notice also that
this property effectively imposes smoothness on the resulting image,
and significantly aids in combatting observation noise as well.

4. EXPERIMENTAL RESULTS

In this section, we empirically demonstrate the performance of the
proposed imager. In addition to the proposed reconstruction method
presented in Section 3, we provide reconstruction results by the
following methods developed for compressive sensing reconstruc-
tion: TVAL3 [10], `1-MAGIC [11], and NESTA [12]. All of these
methods are variations of total-variation (TV)-based reconstruc-
tion, which is a commonly used sparsity-inducing regularization
scheme. In our comparisons, we used the source codes distributed
in their websites. Among the compared methods, only the TVAL3
method supports non-square images. In order to be able to include
`1-MAGIC and NESTA in the comparisons, we perform two exper-
iments. In the first experiment, the performance of all methods is
evaluated using a 41×41 square image with Gaussian measurement
matrices, while in the second experiment the measurement matrix
construction described in Sec. 2 and a 41 × 43 image are used to
evaluate the performance of TVAL3 and the proposed method.

The PMMW image used for the experiments is acquired by a
single-pixel scanning imager developed at Argonne National Labo-
ratory (ANL). The imager is based on the system described in [7]
and shares many components with the system described in Sec. 2,
which is currently being developed at ANL. The test image is shown
in Fig. 3. It was acquired in the afternoon, and the upper part of the
car body looks cooler (darker) due to cold-sky-reflected radiation
while the lower part looks hotter (brighter) due to ground reflected
radiation.

We use the peak signal-to-noise ratio (PSNR) as an objective
measure of reconstruction quality. The algorithms are evaluated us-
ing varying number of measurements M ranging from 0.1 × N to
0.9 × N . We report the average of 10 experiments with different
measurement matrices and noise realizations.

The PSNR performance of all methods using Gaussian measure-
ment matrices for the square (41 × 41) image is shown in Fig. 4. It
can be observed that the proposed Bayesian method produces high
quality reconstructions even with a small number of measurements.
Furthermore, it is clear that our method outperforms the other meth-
ods across all measurement levels. Moreover, all other methods re-
quire parameter tuning to produce their best results, which is incon-
venient for real-time reconstruction. On the other hand, the proposed
method estimates all necessary parameters automatically. In Fig. 5,
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Fig. 4. Mean reconstruction PSNR comparison for all algorithms
using Gaussian measurement matrices.

Fig. 5. Mean reconstruction PSNRs and PSNR ranges for all exper-
iments using measurement binary matrices.

Table 1. Example reconstructed images using binary measurement
matrices for the proposed Bayesian and TVAL3 methods.

Percentage of Measurements
Method 10% 30% 50% Original Image

Bayesian

TVAL3

we show the PSNR performance using binary measurement matri-
ces for the proposed Bayesian method and the TVAL3 method using
the rectangular (41 × 43) image. As in the previous experiment,
the Bayesian method results in more accurate reconstructions at all
measurement levels. Moreover, comparing Figs. 4 and 5 it can be
observed that the performance of TVAL3 method is reduced consid-
erably due to the use of the binary measurement matrices, whereas
the proposed method provides nearly the same level of reconstruc-
tion performance. Figure 5 also shows the minimum and maximum
PSNRs obtained in all experiments at each measurement level. It is
clear that the proposed method is much more robust than TVAL3 to
different measurement matrices and noise realizations, and provides
consistent image quality. Finally, Table 1 shows some examples of
reconstructed images with different numbers of measurements. The
visual results of the images estimated by the proposed method are
clearly of higher quality than those by the TVAL3 method. We have
observed the same behavior for a number of PMMW test images (not
shown due to space limitations).

5. CONCLUSIONS

In this paper, we presented a novel system for PMMW imaging
based on compressive sensing principles. By employing a coded
mask in the original PMMW setup, we acquire incoherent single-
pixel measurements of the imaged scene. A mask construction
method is presented for efficient switching between mask config-
urations. To reconstruct the original image from the incoherent
measurements, we developed a Bayesian algorithm which exploits
the sparsity of the high-frequency content of PMMW images using
sparsity priors. The algorithm employs hierarchical Bayesian mod-
eling and inference procedure to simultaneously and automatically
estimate the unknown image along with all algorithmic param-
eters. Experimental results using simulations with real PMMW
images demonstrate that the proposed system significantly reduces
the number of required measurements. Moreover, the proposed
reconstruction algorithm outperforms existing compressive sensing
reconstruction methods in terms of image quality. The imaging
system presented in this work is currently being developed, and fu-
ture work includes SNR and actual imaging time comparisons with
existing scanning PMMW imagers.
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